期刊文献+

基于遗传算法的二进制程序模糊测试方法 被引量:7

Fuzz testing for binary program based on genetic algorithm
下载PDF
导出
摘要 针对当前二进制程序模糊测试中基于变异生成的测试数据的执行路径重复率高导致代码覆盖率低的问题,提出基于遗传算法的二进制程序模糊测试方法.该方法将测试数据转换为遗传算法中的个体,利用Quick Emulator对二进制程序进行插桩以获取程序执行路径,使用基于程序执行路径的适应度函数指导遗传算法中的进化过程,使生成的测试数据能够覆盖更多的程序执行路径.实验结果表明,该方法在相同时间内达到的代码覆盖率平均比模糊测试工具American Fuzzy Lop(AFL)高25.4%.同时,该方法在漏洞挖掘实验中发现了测试程序中的所有崩溃漏洞并且其效率至少比AFL提高10%.该方法能够用于提高模糊测试的漏洞挖掘效率. A genetic algorithm-based fuzz testing method for binary program was proposed aiming at the low code coverage problem caused by high execution path repetition rate of the test data generated from mutation in binary program fuzz testing.The method transformed test data to individuals in genetic algorithm.Quick Emulator was used to instrument a binary program for extracting program execution path.The evolution process in genetic algorithm was guided by an execution-path-based fitness function,so that the generated test data could cover more program execution paths.Experimental results show that the average code coverage of the method is 25.4% higher than fuzzing tool American Fuzzy Lop(AFL)within the same time.The method can detect all crashes in vulnerability detection experiment and the efficiency is at least 10% higher than AFL.The method is helpful for improving the efficiency of fuzz testing.
作者 焦龙龙 罗森林 刘望桐 潘丽敏 张笈 JIAO Long-long;LUO Sen-lin;LIU Wang-tong;PAN Li-min;ZHANG Ji(School of Information and Electronics,Beijing Institute of Technology, Beijing 100081, China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第5期1014-1019,共6页 Journal of Zhejiang University:Engineering Science
关键词 遗传算法 程序执行路径 模糊测试 二进制程序 插桩 genetic algorithm program execution path fuzz testing binary program program instrumentation
  • 相关文献

参考文献2

二级参考文献18

  • 1Joachim Wegener,Andre Baresel,Harmen Sthamer.Evolutionary test environment for automatic structural testing[J]. Information and Software Technology . 2001 (14)
  • 2Oliver Bühler,Joachim Wegener.Evolutionary functional testing[J]. Computers and Operations Research . 2007 (10)
  • 3AlisonWatkins,Ellen M.Hufnagel.Evolutionary test data generation: a comparison of fitness functions[J]. Softw: Pract. Exper. . 2005 (1)
  • 4James Miller,Marek Reformat,Howard Zhang.Automatic test data generation using genetic algorithm and program dependence graphs[J]. Information and Software Technology . 2005 (7)
  • 5Baars A,Harman M,Hassoun Y,et al.Symbolic Search-basedTesting. Proceedings of the International Conference onAutomated Software Engineering . 2011
  • 6S. Xanthakis,C. Ellis,C. Skourlas,A. Le Gall,S. Kat- sikas,K. Karapoulios.Application of genetic algorithms to software testing. Proceedings of 5th International Conference on Software Engineering and its Applications . 1992
  • 7Michael C C,McGraw G,Schatz M A.Generating Software Test Data by Evolution. IEEE Transactions on Software Engineering . 2001
  • 8Holland John H.Adaptation in natural and artificial system. Journal of Women s Health . 1975
  • 9Watkins, A.,Hufnagel, E.M.,Berndt, D.,Johnson, L.Using genetic algorithms and decision tree induction to classify software failures. International Journal of Software Engineering and Knowledge Engineering . 2006
  • 10PAULO MARCOS SIQUEIRA BUENO,MARIO JINO.AUTOMATIC TEST DATA GENERATION FOR PROGRAM PATHS USING GENETIC ALGORITHMS. International Journal of Software Engineering and Knowledge Engineering . 2002

共引文献9

同被引文献52

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部