期刊文献+

基于粒子滤波和地图匹配的融合室内定位 被引量:6

Fused Indoor Localization Based on Particle Filtering and Map Matching
下载PDF
导出
摘要 为提高室内定位的精确性与合理性,该文提出使用粒子滤波融合Wi Fi指纹定位和行人航位推算,应用室内地图对定位结果进行匹配与矫正。地图匹配中,首先通过室内地图约束粒子的不恰当转移来解决粒子的穿墙问题,然后采用基于回退的穿墙矫正算法对行走轨迹中的穿墙现象进行矫正。仿真实验中,经过粒子滤波融合后估计的行走轨迹更加接近真实轨迹,优于Wi Fi指纹算法和行人航位推算算法估计的轨迹,而经过地图匹配与矫正后,定位精度和合理性得到进一步提高。 In order to improve the accuracy of localization, the paper applies particle filtering to fuse Wi Fi fingerprinting and pedestrian dead reckoning(PDR). The map matching algorithm. The map matching algorithm first makes use of the indoor map to constrain the improper transitions of particles to reduce wall-crossing problems of them and then corrects wall-crossing problems of trajectories with a trace-back method. Evaluations show that the trajectories of the fused solution are closer to the real trajectories than Wi Fi fingerprinting and PDR, and after map matching the trajectories are more accurate and reasonable.
作者 周瑞 鲁翔 卢帅 李志强 桑楠 ZHOU Rui;LU Xiang;LU Shuai;LI Zhi-qiang;and SANG Nan(School of Information and Software Engineering, University of Electronic Science and Technology of China Chengdu 610054)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2018年第3期415-420,共6页 Journal of University of Electronic Science and Technology of China
基金 国家科技支撑计划(2012BAH44F00)
关键词 室内定位 地图匹配 粒子滤波 行人航位推算 WiFi指纹 indoor localization map-matching particle filtering pedestrian dead reckoning WiFi fingerprinting
  • 相关文献

参考文献1

二级参考文献65

  • 1宁晓琳,房建成.一种基于UPF的月球车自主天文导航方法[J].宇航学报,2006,27(4):648-653. 被引量:23
  • 2汤琦,黄建国,杨旭东,冯西安.基于粒子滤波的被动多基站跟踪算法(英文)[J].宇航学报,2007,28(2):375-379. 被引量:1
  • 3Orton M, Fitzgerald W. A Bayesian approach to tracking multiple targets using sensor arrays and particle filters[J]. IEEE Trans. Signal Processing, 2002, 50(2): 216-223.
  • 4Hue C, J Le Cadre, P' erez P. Tracking multiple objects with particle filtering[J]. IEEE Trans. Aerospace and Electronic Systems, 2002, 38(3) : 791 - 812.
  • 5Li Ping, Kadirkamanathan V. Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems[J]. IEEE Trans. Systems, Man and Cybernetics-Part C, 2001, 31(3): 337 - 343.
  • 6Andrieu C, Doucet A, Singh S S, et al. Particle methods for change detection, system identification, and control [J]. Proc. IEEE, 2004, 92(3) : 423 - 438.
  • 7程水英.空对海单站无源跟踪中的免微分算法研究[D].合肥:电子工程学院博士论文,2006,4.
  • 8Rudolph van der Merwe, Doucet Arnaud, Nando de Freitas, et al. The Unscented Particle Filter[R]. Cambridge: Cambridge University Engineering Department, Aug. 2000.
  • 9Haug A J. A tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes [R]. Mclean : MITRE Corporation, Jan. 2005.
  • 10Marshall A. The use of multi-stage sampling schemes in Monte Carlo computations[C]// Meyer M. Symposium on Monte Carlo Methods. New York: 1956:123 - 140.

共引文献98

同被引文献33

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部