摘要
在无界区域R^n中考虑了具有可加噪声的随机强衰减半线性波动方程的Cauchy问题,在相空间X=W_(lu)^(2,p)(R^n)×L_(lu)~p(R^n)中证明了该方程的整体可解性和随机吸引子的存在性.为解决该方程相关联的半群S(t,ω)的弱渐近紧性问题,首先证明了集合B_1∶=S(1,ω)γ^+(B_0)在空间D(L)=W_(lu)^(2,p)(R^n)×W_(lu)^(2,p)(R^n)中的有界性,其中B_0是半群S(t,ω)在相空间X中的吸收集;然后利用紧嵌入定理W_(lu)^(2,p)(R^n)×W_(lu)^(2,p)(R^n)■W_ρ^(1,p)(R^n)×W_ρ^(1,p)(R^n)得到了集合B_1在相空间X中的弱渐近紧性.
In this paper,we consider the Cauchy problem for the stochastic strongly damped semilinear wave equations with additive noisein the unbounded domain-Rn.The global solvability and the existence of the sto-chastic attractor to this problem are proved in the phase space X = W2,plu(Rn)× Lplu(Rn).To study to the asymptotic compactness of the corresponding semigroup f(t,ω),we first prove the set B1:= f(1,ω)γ+(B0) is bounded in D(L)= W2,plu(Rn)×W2,plu(Rn),where B0 is the absorbing set of in f(t,ω)in X,then we use the compact embedding theorems W2,plu(Rn)×W2,plu(Rn) W1,pρ(Rn)×W1,pρ(Rn)obtain the compactness of the set B1 in the phase space X.
作者
杜萍
杨玉彤
刘爽
韩英豪
DU Ping;YANG Yutong;LIU Shuang;HAN Yinghao(School of Mathematics, Liaoning Normal University, Dalian 116029, China)
出处
《延边大学学报(自然科学版)》
CAS
2018年第1期7-13,18,共8页
Journal of Yanbian University(Natural Science Edition)
关键词
强衰减随机波动方程
无界区域
局部一致空间
随机吸引子
strongly damped stochastic wave equation
unbounded domain
locally uniform space
stochastic attractor