摘要
讨论了Banach空间E中变系数的一阶非线性常微分方程u′(t)+a(t)u(t)=f(t,u(t)),t∈R正ω-周期解的存在性,其中a(t)∈C(R,(0,+∞)),f∶R×P→P连续,P为E中的正元锥.利用凝聚映射的不动点指数理论获得了该问题正ω-周期解的存在性,所得结果改进和推广了文献[5-8]中的相关结论.
The existence of positive ω -periodic solutions for first order differential equations u'(t)+a(t)u(t)=f(t,u(t)), t∈R in Banach spaces E was discussed, where a(t)∈C(R,(0,+∞)), f:R×P→P is continuous, and P is the cone of positive elements in E. An existence result of positive ω -periodic solutions was obtained by using the fixed point index theory of condensing mapping. The results extended and improved the relevant conclusion in the literature [5-8].
作者
李小龙
LI Xiaolong(College of Mathematics and Statistics, Longdong University, Qingyang 745000, Chin)
出处
《延边大学学报(自然科学版)》
CAS
2018年第1期14-18,共5页
Journal of Yanbian University(Natural Science Edition)
基金
国家自然科学基金资助项目(11561038)
甘肃省高等学校科研项目(2016B-103)
关键词
闭凸锥
周期解
凝聚映射
不动点指数
closed convex cone
periodic solution
condensing mapping
fixed point index