期刊文献+

Banach空间变系数的一阶非线性微分方程的正周期解

Positive periodic solutions for nonlinear first order differential equations with changing of coefficents in Banach spaces
下载PDF
导出
摘要 讨论了Banach空间E中变系数的一阶非线性常微分方程u′(t)+a(t)u(t)=f(t,u(t)),t∈R正ω-周期解的存在性,其中a(t)∈C(R,(0,+∞)),f∶R×P→P连续,P为E中的正元锥.利用凝聚映射的不动点指数理论获得了该问题正ω-周期解的存在性,所得结果改进和推广了文献[5-8]中的相关结论. The existence of positive ω -periodic solutions for first order differential equations u'(t)+a(t)u(t)=f(t,u(t)), t∈R in Banach spaces E was discussed, where a(t)∈C(R,(0,+∞)), f:R×P→P is continuous, and P is the cone of positive elements in E. An existence result of positive ω -periodic solutions was obtained by using the fixed point index theory of condensing mapping. The results extended and improved the relevant conclusion in the literature [5-8].
作者 李小龙 LI Xiaolong(College of Mathematics and Statistics, Longdong University, Qingyang 745000, Chin)
出处 《延边大学学报(自然科学版)》 CAS 2018年第1期14-18,共5页 Journal of Yanbian University(Natural Science Edition)
基金 国家自然科学基金资助项目(11561038) 甘肃省高等学校科研项目(2016B-103)
关键词 闭凸锥 周期解 凝聚映射 不动点指数 closed convex cone periodic solution condensing mapping fixed point index
  • 相关文献

参考文献8

二级参考文献50

  • 1LIYONGXIANG.POSITIVE PERIODIC SOLUTIONS OF FIRST AND SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS[J].Chinese Annals of Mathematics,Series B,2004,25(3):413-420. 被引量:17
  • 2李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报(中文版),2005,48(6):1089-1094. 被引量:66
  • 3余庆余.半序Banach空间中凝聚映射及其正不动点[J].兰州大学学报:自然科学版,1979,(2):1-5.
  • 4[1]Leela, S., Monotone method for second order periodic boundary value problems, Nonlinear Anal.,7(1983), 349-355.
  • 5[2]Nieto, J. J., Nonlinear second-order periodic boundary value problems, J. Math. Anal. Appl.,130(1988), 22-29.
  • 6[3]Cabada, A. & Nieto, J. J., A generation of the monotone iterative technique for nonlinear second-order periodic boundary value problems, J. Math. Anal. Appl., 151(1990), 181-189.
  • 7[4]Cabada, A., The method of lower and upper solutions for second, third, forth, and higher order boundary value problems, J. Math. Anal. Appl., 185(1994), 302-320.
  • 8[5]Gossez, J. P. & Omari, P., Periodic solutions of a second order ordinary differential equation: A necessary and sufficient condition for nonresonance, J. Diff. Equs., 94(1991), 67-82.
  • 9[6]Omari, P., Villari, G. & Zandin, F., Periodic solutions of Lienard equation with one-sided growth restrictions, J. Diff. Equs., 67(1987), 278-293.
  • 10[7]Ge, W. G., On the existence of harmonic solutions of lienard system, Nonlinear Anal., 16(1991),183-190.

共引文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部