期刊文献+

Regulatory effects of antitumor agent matrine on FOXO and PI3K-AKT pathway in castration-resistant prostate cancer cells 被引量:10

Regulatory effects of antitumor agent matrine on FOXO and PI3K-AKT pathway in castration-resistant prostate cancer cells
原文传递
导出
摘要 We previously demonstrated that matrine could inhibit the proliferating, migrating, as well as invading processes of both PC-3 and DU145 cells. However, the underlying molecular mechanisms have not yet been clearly defined. In this study, using various techniques such as high throughput sequencing technology, bioinformatics, quantitative real-time PCR, and immunoblot analysis,we aimed to understand whether matrine serves as a novel regulator of FOXO and PI3K-AKT signaling pathway. DU145 and PC-3 cell lines were cultured for 24 h in vitro. Cells were treated with either matrine or control serum for 48 h, followed by extraction of total RNA. The RNA was sequenced using HiSeq 2500 high-throughput sequencing platform (Illumina). A gene library was established and quality analysis of read data carried out. Integrated database from the website DAVID was used to analyze Gene Ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway of differential genes was used for pathway analysis, screening for fold differences of more than two times. The FOXO and PI3K-AKT signaling pathways were screened, and expression levels of mRNA and core protein detected by real-time PCR and immunoblotting, respectively. High throughput sequencing and GO analysis revealed that differentially expressed genes before and after treatment played an important role in cell metabolic process, growth process, anatomical structure formation, cellular component organization, and biological regulation. KEGG signal pathway analysis revealed that FOXO and PI3K-AKT signal pathways had a significant difference between before and after matrine-treated androgen-independent prostate cancer cells PC-3 and DU145. Real-time PCR showed that matrine treatment led to a significant increase in the expression levels of FOXO1A, FOXO3A, FOXO4, and FOXO6 in DU145 and PC-3 cells (P<0.01 or P<0.05), whereas the PI3K expression levels decreased (P<0.01). Similarly, immunoblotting revealed a significant increase (P<0.05) in the expression levels of FOXO1A FOXO3A, FOXO4, and FOXO6 in both PC-3 and DU145 cells, whereas PI3K expression levels decreased (P<0.05). Matrine had a broad regulating effect on the mRNA expression profiles of both PC-3 and DU145 cells. Matrine may inhibit cell proliferation, migration, as well as invasion, and induce apoptosis in both PC-3 and DU145 cells through FOXO and PI3K-AKT signaling pathways. Matrine could therefore be used as a complementary drug to present chemotherapeutic agents, for treating androgen-independent prostate cancer. We previously demonstrated that matrine could inhibit the proliferating, migrating, as well as invading processes of both PC-3 and DU145 cells. However, the underlying molecular mechanisms have not yet been clearly defined. In this study, using various techniques such as high throughput sequencing technology, bioinformatics, quantitative real-time PCR, and immunoblot analysis,we aimed to understand whether matrine serves as a novel regulator of FOXO and PI3K-AKT signaling pathway. DU145 and PC-3 cell lines were cultured for 24 h in vitro. Cells were treated with either matrine or control serum for 48 h, followed by extraction of total RNA. The RNA was sequenced using HiSeq 2500 high-throughput sequencing platform (Illumina). A gene library was established and quality analysis of read data carried out. Integrated database from the website DAVID was used to analyze Gene Ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway of differential genes was used for pathway analysis, screening for fold differences of more than two times. The FOXO and PI3K-AKT signaling pathways were screened, and expression levels of mRNA and core protein detected by real-time PCR and immunoblotting, respectively. High throughput sequencing and GO analysis revealed that differentially expressed genes before and after treatment played an important role in cell metabolic process, growth process, anatomical structure formation, cellular component organization, and biological regulation. KEGG signal pathway analysis revealed that FOXO and PI3K-AKT signal pathways had a significant difference between before and after matrine-treated androgen-independent prostate cancer cells PC-3 and DU145. Real-time PCR showed that matrine treatment led to a significant increase in the expression levels of FOXO1A, FOXO3A, FOXO4, and FOXO6 in DU145 and PC-3 cells (P〈0.01 or P〈0.05), whereas the PI3K expression levels decreased (P〈0.01). Similarly, immunoblotting revealed a significant increase (P〈0.05) in the expression levels of FOXO1A FOXO3A, FOXO4, and FOXO6 in both PC-3 and DU145 cells, whereas PI3K expression levels decreased (P〈0.05). Matrine had a broad regulating effect on the mRNA expression profiles of both PC-3 and DU145 cells. Matrine may inhibit cell proliferation, migration, as well as invasion, and induce apoptosis in both PC-3 and DU145 cells through FOXO and PI3K-AKT signaling pathways. Matrine could therefore be used as a complementary drug to present chemotherapeutic agents, for treating androgen-independent prostate cancer.
出处 《Science China(Life Sciences)》 SCIE CAS CSCD 2018年第5期550-558,共9页 中国科学(生命科学英文版)
基金 supported by the National Natural Science Foundation of China (81472382) the National Natural Science Foundation of China for Young Scientists (81101947) the Guangdong Province Natural Science Foundation (2014A030313079) the Fundamental Research Funds for the Central Universities (14ykpy19) Guangdong Province Science and Technology for Social Development Project (2013B021800107) Guangzhou City in 2015 scientific research projects (7415600066401 to Hai Huang)
关键词 前列腺 代理人 房间 小径 癌症 apoptosis 基因本体论 生物信息学 matrine androgen-independent prostate cancer mRNA FOXO signaling pathway PI3K-AKT signaling pathway
  • 相关文献

参考文献1

二级参考文献2

共引文献6

同被引文献96

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部