期刊文献+

基于视差图像序列的深度估计算法研究

Research on Depth Estimation Algorithm Based on Parallax Image Sequence
下载PDF
导出
摘要 现有的深度估计算法中,Kim算法不需要全局优化,可以保留精确的目标轮廓,同时仍然确保在少量细节的区域中平滑重建,得到的效果相对较好,但是其在深度扩散算法中时间复杂度太高,不适合广泛应用.针对这一问题,我们对其深度扩散算法进行改进.首先,根据边缘图像的深度范围覆盖整个场景的深度,将深度扩散的方式转变为在边缘深度范围内的快速搜索而非整个区域的全局搜索,明显降低了算法的时间复杂度.另外,根据极平面图像(EPI)的线性结构,将深度扩散沿着斜率的方向对多个视角进行综合考虑扩散,而非只是针对单个视角下的像素点进行,使非边缘平滑区域的扩散更加精准.经过仿真验证,本文的算法在一定程度上优于Kim算法,可以广泛使用. As one of the existing estimation algorithms,Kim algorithm does not need global optimization.It can still ensure smooth reconstruction in a small area of detail while keeping accurate contour of the target.The results are relatively good,but the time complexity is too high in the depth diffusion algorithms,not suitable for wide application.In order to solve this problem,the depth diffusion algorithm is improved.Firstly,according to the depth of edge images,the entire scene depth is covered,and the method of deep diffusion is transformed into a quick search within the edge depth,rather than a global search for the whole area.,significantly reduces the time complexity of the algorithm.In addition,according to the linear structure of epipolar-plane image,the depth diffusion is taken into consideration with multiple views along the slope,rather than just pixels in a single view,which makes the diffusion of non-edge smooth areas more accurate.The simulation results show that the algorithm we proposed in this paper is better than the Kim algorithm to some extent and can be widely used.
作者 张敏 苏新彦 白桦 ZHANG Min;SU Xinyan;BAI Hua(Shanxi Provincial Key Laboratory of Signal Capturing and Processing, North University of China, Taiyuan 030051, China;China Capital Aerespace Mechinery Company, Beijing 100076, China)
出处 《测试技术学报》 2018年第2期131-134,共4页 Journal of Test and Measurement Technology
基金 国家自然科学基金资助项目(61171179)
关键词 多视角成像 极平面图像 深度估计算法 深度扩散算法 算法时间复杂度 multi-view imaging epipolar-plane image depth estimation algorithm deep diffusion algorithm time complexity of algorithm
  • 相关文献

参考文献1

二级参考文献19

  • 1J. Cech, R. Sara. Efficient sampling of disparity space for fast and accurate matching [C]. IEEE Proceedings of the Second International ISPRS Workshop (BenGOS 2007), Minneapolis, MN, USA, June 23, 2007. 1-8.
  • 2P. F. Felzenszwalb, R. Zabih. Dynamic programming and graph cut algorithms in computer vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (4): 721-740.
  • 3R. Szelisk, I. R. Zabih. An experimental comparison of stereo algorithms [C]. Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, 2000. 1883:1-19.
  • 4M. Bleyer, M. Gelautz. Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions [J]. Signal Processing : Image Communication, 2007, 22 (2) : 127-143.
  • 5T. H. Cormen, C. E. Leiserson, R. L. Rivest et al.. Introduction to Algorithms (2nd Ed. ) [M]. MIT Press, 2001. 348-352.
  • 6D. Scharstein, R. Szeliski. A taxonomy and evaluation of dense two frame stereo correspondence algorithms [J]. InternationalJ. Computer Vision, 2002, 47(1-3): 7-42.
  • 7V. Kolmogorov, R. Zabih. Multi-camera scene reconstruction via graph cuts [ C]. Proceedings of the Seventh European Conference on Computer Vision (ECCV 2002), 2002, 3:82-96.
  • 8C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics)[M]. Springer, 2006.
  • 9J. D. Lafferty, A. McCallum, F. C. N. Pereira. Conditional random fields- probabilistic models for segmenting and labeling sequence data[C]. Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001), 2001. 282-289.
  • 10Daniel Scharstein, Richard Szeliski. Middlebury stereo vision [OL]. http://vision, middlebury, edu/stereo/.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部