期刊文献+

基于Rao-Blackwellized蒙特卡罗数据关联的检测跟踪联合优化 被引量:5

Joint optimization of detection and tracking with Rao-Blackwellized Monte Carlo data association
下载PDF
导出
摘要 提出了基于Rao-Blackwellized蒙特卡罗数据关联的雷达目标检测跟踪联合优化算法。Rao-Blackwellization方法将单目标跟踪与数据关联分开处理,将序贯蒙特卡罗方法(粒子滤波)用于数据关联,实现杂波与虚警量测中的多目标跟踪。同时,根据粒子的分布范围确定波门大小。在考虑粒子权重的前提下,利用检测单元与所有粒子的相对位置对检测门限进行修正,提高检测率。将本文算法与已经实现的基于空域特性的杂波抑制算法相结合,分别应用于仿真数据、S波段相参与非相参雷达实测数据。实验结果表明,本文算法能够在粒子数较少的情况下,实现对小弱目标的检测与跟踪。 A joint optimization algorithm was proposed for radar target detection and tracking with RaoBlackwellized Monte Carlo data association. Rao-Blackwellization made the separation of single target tracking and data association,where the data association was solved by the sequential Monte Carlo method(particle filtering),leading to the multiple target tracking in the environment of clutter and false alarm measurements.Meanwhile,the size of the wave gate depended on the distribution range of particles. Under the consideration of the particle weights,the detection threshold was modified with the relative position of the detection units to all the particles,improving the detection rate. Finally,combined with the algorithm for clutter suppression with spatial features achieved in the previous research,the proposed algorithm was applied to the simulated data as well as the ground-truth data collected by the S-band incoherent and coherent radars. It is demonstrated that the proposed algorithm can realize the detection and tracking of small targets with relatively small number of particles.
作者 陈唯实 闫军 李敬 CHEN Weishi;YAN Jun;LI Jing(Airport Research Institute,China Academy of Civil Aviation Science and Technology,Beijing 100028,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第4期700-708,共9页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金委员会-中国民航局民航联合研究基金(U1633122) 国家重点研发计划(2016YFC0800406)~~
关键词 数据关联 雷达 目标 检测 跟踪 data association radar target detection tracking
  • 相关文献

参考文献4

二级参考文献59

  • 1郭宝录,李朝荣,乐洪宇.国外无人机技术的发展动向与分析[J].舰船电子工程,2008,28(9):46-49. 被引量:20
  • 2关键,何友.OSCAGO-CFAR检测器在干扰边缘中的性能分析[J].电子学报,1996,24(3):56-60. 被引量:4
  • 3Umnanned Aircraft Systems Flight Plan 2009 - 21347. United States AirForce.
  • 4Bar-Shalom Y and Tse E. Tracking and Data Association[M]. New York: Academic Press, 1988: 173-353.
  • 5Aslan M S and Saranl A. Threshold optimization for tracking a nonmaneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 37(2): 2844-2859.
  • 6Aslan M S and Saranl A. Advances in Heuristic Signal Processing and Applications[M]. Berlin Heidelberg: Springer, 2013: 111-143.
  • 7Aslan M S, Saranl A, and Baykal B. Tracker-aware adaptive detection: an efficient closed-form solution for the Neyman- Pearson case[J]. Digital Signal Processing, 2010, 20(5): 1468-1481.
  • 8Willett P, Niu R, and Bar-Shalom Y. Integration of Bayes detection with target tracking[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 17-29.
  • 9Ristic B, Arulampalam S, and Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications[M]. Boston, MA: Artech House, 2004: 86-102.
  • 10Liggins M E, Hall D L, and Llinas J. Handbook of Multisensor Data Fusion: Theory and Practice[M]. 2nd Ed. Boca Raton, CRC Press, 2009: 204-241.

共引文献50

同被引文献69

引证文献5

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部