摘要
随着互联网的不断发展和网络覆盖率的提高,搜索引擎日益成为人们查询生活信息的主要渠道,搜索关键词直接地反映了查询人的意图,且搜索数据可实时统计,因此网络搜索数据成了流感监测的理想数据源。在实际应用中,结合疾病预防控制中心等官方监测数据,可实现流感等重大传染病的早期预警,及早采取相关预防措施,降低疾病传播风险,减少国家及人民的财政负担。与传统的疾病监测相比网络搜索数据具有响应快、易获取、低成本等特点,但数字化疾病监测仍然面临着如网络用户行为的不确定性、搜索关键词获取的不准确性,网络覆盖的不全面性等诸多挑战。因此,未来的相关研究应着眼于如何校正提高互联网搜索数据的准确性,探讨如何将搜索引擎数据与地理信息系统相结合,利用时空大数据进行传染病预测预警。解除数据模块间的壁垒,一面多点,多面多点的采集数据,更好的实现大数据的共享,提高数据的利用率及监测预警的准确性。
With the continuous development of the Internet and improvement of the network coverage, search engine has become the main channel for information query. As query keywords directly reflect people′s intent and search data can be counted in real time, the network search data is considered the ideal data source for influenza surveillance. In the practical application, a surveillance and early warning system utilizing the search engine data and the official monitoring data, such as CDC, can perform early warning of major infectious diseases in time so as to take preventive measures, thus reducing the risk of disease transmission and the financial burden of the country and the people. Compared with the traditional disease monitor system, that based on the network search data has the characteristics of fast response, easy access, low cost and so on; however,it still faces many challenges, such as the uncertainty of the netizen's behavior, the inaccuracy of the search keywords and the incomplete network coverage, etc. Therefore, future research should focus on improving the accuracy of Internet search data and explore the ways to use spatial and temporal data for infectious disease prediction and early warning through combining search engine data with geographic information system(GIS). Furthermore, they need to remove the barriers between data modules and collect data collectively and comprehensively, so as to realize the sharing of big data and improve the utilization of data and the accuracy of the monitoring and early warning system.
作者
温丽
蔡永铭
WEN Li, CAI Yongming(School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, Chin)
出处
《分子影像学杂志》
2018年第2期207-211,共5页
Journal of Molecular Imaging
基金
广东省自然科学基金(2014A030313585)
关键词
搜索引擎
大数据
流感
监测
预警
search engine
big data
influenza
monitoring
early warning