摘要
针对二阶连续时间多智能体系统包容控制问题,假设智能体之间的通信为有向通信且存在时变通信时延,基于代数图论、矩阵理论和Lyapunov分析方法,得到了所有的跟随者都能够最终汇聚于由多个动态领导者组成的凸包的充分条件。所得条件以线性矩阵不等式表示,且与通信时延的上界及其导数信息有关。最后,用一个数值仿真来验证其的主要结果表明。
This paper deals with a containment control problem for second-order continue-time multi-agent systems. In the investigation, it is assumed that each agent receives the neighbor state information with time-varying communication delays under directed communication topology. By applying the algebraic graph theory, matrix theory and Lyapunov analysis method, a sufficient condition for the whole follower-agents gathered into a convex hall consisted by the dynamic multi-leaders is derived. Those conditions are related to the upper bound of the communication delay and its derivative, and can be represented by linear matrix inequalities. Finally, a numerical simulation is given to verify our main results.
作者
刘学良
张志
LIU Xue-liang;ZHANG Zhi(School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, Chin)
出处
《控制工程》
CSCD
北大核心
2018年第5期910-914,共5页
Control Engineering of China
基金
国家自然科学基金项目(61471122)
广东省自然科学基金项目(2014A030310418,2016A030313134)
广东省科技计划项目(2014A050503068,2015A010106018)