摘要
In this paper, a novel unmanned aerial vehicle(UAV)-enabled full duplex decode-and-forward(DF) technique is used in mobile relaying system. Compared with conventional static relaying, mobile relaying provides more degree of freedom for experiencing better channel conditions and further improving the system reliable performance. The source and relay transmit power as well as relay trajectory are jointly optimized for sum outage probability minimization in mobile relaying system. Due to the non-convex nature of the original problem, block coordinate decent optimization techniques are employed to decompose it into two sub-problems, which leads to an efficient iterative algorithm. Specifically, for the pre-determined relay trajectory, the optimal transmit power of source and relay are obtained by solving Karush-Kuhn-Tucker(KKT) conditions. For the given source/relay power allocation, the optimal UAV trajectory is obtained by solving dual problem. Based on the two steps, an iterative algorithm is proposed to jointly optimize source/relay power allocation and UAV trajectory alternately. Numerical results show the performance gain of our proposed scheme.
In this paper, a novel unmanned aerial vehicle(UAV)-enabled full duplex decode-and-forward(DF) technique is used in mobile relaying system. Compared with conventional static relaying, mobile relaying provides more degree of freedom for experiencing better channel conditions and further improving the system reliable performance. The source and relay transmit power as well as relay trajectory are jointly optimized for sum outage probability minimization in mobile relaying system. Due to the non-convex nature of the original problem, block coordinate decent optimization techniques are employed to decompose it into two sub-problems, which leads to an efficient iterative algorithm. Specifically, for the pre-determined relay trajectory, the optimal transmit power of source and relay are obtained by solving Karush-Kuhn-Tucker(KKT) conditions. For the given source/relay power allocation, the optimal UAV trajectory is obtained by solving dual problem. Based on the two steps, an iterative algorithm is proposed to jointly optimize source/relay power allocation and UAV trajectory alternately. Numerical results show the performance gain of our proposed scheme.
基金
supported by National High Technology Project of China 2015AA01A703
Scientific and Technological Key Project of Henan Province under Grant 182102210449
the National Natural Science Foundation of China under Grants 61372101 and 61671144