期刊文献+

A Highly Isolated Co-Polarized Co-Located Electric and Magnetic Dipoles and Its MIMO Performance 被引量:1

A Highly Isolated Co-Polarized Co-Located Electric and Magnetic Dipoles and Its MIMO Performance
下载PDF
导出
摘要 In this paper, a co-polarized, co-located electric and magnetic dipoles(CCEMD) with high isolation is presented. The antenna consists of a loop based on segmented line and two independent feeding ports. Two modes of the antenna are exited separately, the first one has a radiation pattern equivalent to an electric dipole by exciting anti-phase current with symmetric distribution, and the second one is like a magnetic dipole by exciting uniform and in-phase currents along the loop. The antenna is fabricated and tested. Its measured common-10 d B impedance bandwidth at two ports is 280 MHz(2.32-2.6 GHz) with isolation better than 41 d B. Its MIMO performance in terms of capacity gain(CG) over the SISO system is investigated in a multipath rich environment containing two parallel PEC planes by both measurements and image theory based simulations. Results show that, in free space, the CG results are just slightly larger than 1, however, in the multipath rich channel, the CG values are very close to 2, which indicates that two separate subchannels can be achieved by the proposed CCEMD. The measured results of CG agree well with that obtained by simulation. In this paper, a co-polarized, co-located electric and magnetic dipoles(CCEMD) with high isolation is presented. The antenna consists of a loop based on segmented line and two independent feeding ports. Two modes of the antenna are exited separately, the first one has a radiation pattern equivalent to an electric dipole by exciting anti-phase current with symmetric distribution, and the second one is like a magnetic dipole by exciting uniform and in-phase currents along the loop. The antenna is fabricated and tested. Its measured common-10 d B impedance bandwidth at two ports is 280 MHz(2.32-2.6 GHz) with isolation better than 41 d B. Its MIMO performance in terms of capacity gain(CG) over the SISO system is investigated in a multipath rich environment containing two parallel PEC planes by both measurements and image theory based simulations. Results show that, in free space, the CG results are just slightly larger than 1, however, in the multipath rich channel, the CG values are very close to 2, which indicates that two separate subchannels can be achieved by the proposed CCEMD. The measured results of CG agree well with that obtained by simulation.
出处 《China Communications》 SCIE CSCD 2018年第5期104-110,共7页 中国通信(英文版)
基金 supported by the National Natural Science Foundations of China (61771435)
关键词 MIMO 偶极子 磁性 地点 极化 表演 孤立 阻抗带宽 high isolation loop antenna co-polarized image theory
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部