期刊文献+

1.3 μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers 被引量:2

1.3 μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers
原文传递
导出
摘要 We report on the first electrically pumped continuous-wave(CW) In As/Ga As quantum dot(QD) laser grown on Si with a GaInP upper cladding layer. A QD laser structure with a Ga_(0.51)In_(0.49)P upper cladding layer and an Al_(0.53)Ga_(0.47)As lower cladding layer was directly grown on Si by metal–organic chemical vapor deposition. It demonstrates the postgrowth annealing effect on the QDs was relieved enough with the GaInP upper cladding layer grown at a low temperature of 550°C. Broad-stripe edge-emitting lasers with 2-mm cavity length and 15-μm stripe width were fabricated and characterized. Under CW operation, room-temperature lasing at ~1.3 μm has been achieved with a threshold density of 737 A∕cm^2 and a single-facet output power of 21.8 mW. We report on the first electrically pumped continuous-wave (CW) InAs/GaAs quantum dot (QD) laser grown on Si with a GaInP upper cladding layer. A QD laser structure with a Ga0.51In0.49P upper cladding layer and an Al0.53Ga0.47As lower cladding layer was directly grown on Si by metal-organic chemical vapor deposition. It demonstrates the postgrowth annealing effect on the QDs was relieved enough with the GaInP upper layer grown at a low temperature stripe width were fabricated and been achieved with a threshold Chinese Laser Press cladding of 550℃. Broad-stripe edge-emitting lasers with 2-ram cavity length and 15-μm characterized. Under CW density of 737 A/cm2 and operation, room-temperature lasing at-1.3 μm has a single-facet output power of 21.8 mW.
出处 《Photonics Research》 SCIE EI 2018年第4期321-325,共5页 光子学研究(英文版)
基金 Beijing University of Posts and Telecommunications(BUPT)(IPOC2016ZT01) National Natural Science Foundation of China(NSFC)(61474008,61574019,61674020) International Science&Technology Cooperation Program of China(2011DFR11010) 111 Project of China(B07005)
  • 相关文献

参考文献1

二级参考文献21

  • 1Passaseo A, Rinaldi R, Longo M, Antonaci S, Convertino A L, Cingolani R, Taurino A and Catalano M 2001 J. Appl.Phys. 89 4341.
  • 2Lu W, Li D B. Zhang Z Y, Li C R, ZHANG Z, Xu B and Wang Z G 2005 Chin. Phys. Lett. 22 967.
  • 3Malik S, Roberts C, lk,lurray R and Pate M 1997 Appl.Phys. Lett. 71 1987.
  • 4Hsu T M, Lan Y S, Chang W H, Yeh N T and Chyi J I 2000 Appl. Phys. Lett. 76 691.
  • 5Xu S J, Wang X C, Chua S J, Wang C H, Fan W J, Jiang J and Xie X G 1998 Appl. Phys. Lett. 72 3335.
  • 6Zhang Y C, Wang Z G, Xue B, Liu F Q, Chen Y H, Dowd P 2002 J. Crystal Growth 224 136.
  • 7Liu H Y, Wang X D, Wei Y Q, Xue B, Ding D and Wang Z G 2000 J. Crystal Growth 220 216.
  • 8Ishihara T, Lee S, Akabori M,Motohisa J and Fukui T 2002 J. Crystal Growth 237 1476.
  • 9Leon R, Senden T J, Kim Y, Jagadish C and Clark A 1997 Phys. Rev. Lett., 78 4942.
  • 10Liang S, Zhu H L, Pan J Q, Hou L P and Wang W 2005 J.Crystal Growth 282 297.

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部