期刊文献+

基于向量代数的广义重心坐标计算方法

A computing method of generalized barycentric coordinates based on vector algebra
下载PDF
导出
摘要 为了求解空间广义重心坐标,提出基于向量代数的广义重心坐标计算方法。基于部分点稀疏解的唯一性,通过求解少数点的稀疏解,以这些稀疏解为重心坐标,复合这些稀疏解求得空间数据点的广义重心坐标。此方法可行并且计算简便。 In order to solve the space generalized barycentric coordinates,a computing method of generalized barycentric coordinates is proposed based on vector algebra,based on the uniqueness of sparse solution of partial point,by solving the sparse solution of minority points,these sparse solutions are taken as barycentric coordinates and combined to obtain the generalized barycentric coordinates of the spatial data points.This method is feasible and easy to calculate.
作者 王继娟 彭丰富 WANG Jijuan;PENG Fengfu(School of Mathematics and Computational Science, Guilin University of Electronic Technology, Guilin 541004, China)
出处 《桂林电子科技大学学报》 2018年第2期150-153,共4页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11361018)
关键词 广义重心坐标 向量代数 稀疏解 generalized barycentric coordinate vector algebra sparse solution
  • 相关文献

参考文献2

二级参考文献21

  • 1Wachspress Eugene A Rational Finite Element Basis[M] New York: Academic Press, 1975
  • 2Loop Charles, DeRose Tony. A multisided generalization of Bézier surfacesJ]ACM Transactions on Graphics, 1989, 8(3): 204~234
  • 3Eck Matthias, DeRose Tony, Duchamp Tom, et al. Multiresolution analysis of arbitrary meshes[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, CA, 1995. 173~182
  • 4Floater Michael S. Parametrization and smooth approximation of surface triangulations[J]. Computer Aided Geometric Design, 1997, 14(3): 231~250
  • 5Floater Michael S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19~27
  • 6Meyer Mark, Lee Haeyoung, Barr Alan, et al. Generalized barycentric coordinates on irregular polygons[J]. Journal of Graphics Tools, 2002, 7(1): 13~22
  • 7Warren Joe. Barycentric coordinates for convex polytopes[J]. Advances in Computational Mathematics, 1996, 6(2): 97~108
  • 8Sibson R. A brief description of natural neighbour interpolation[A]In: Barnett V, ed. Proceedings of Interpreting Multivariate Data[C]. Chichester: John Wiley, 1981. 21~36
  • 9Beier T,Neely S.Feature-based image metamorphosis[J].Computer Graphic s ( SI GGRAPH "92 ), 1992 ; 26 ( 2 ) : 35 -42.
  • 10Shapira M, Rappoport A.Shape blending using the skar-skeleton repr-esentation[J].IEEE Transactions on Computer Graphics and Application, 1995 ; ( 15 ) :44-51.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部