期刊文献+

双边障碍问题的模系矩阵分裂迭代方法

A modulus-based matrix splitting method for two-side obstacle problem
下载PDF
导出
摘要 针对一类双边障碍问题,提出了一类模系矩阵分裂迭代方法。该方法采用模系矩阵分裂迭代算法逐次子线性互补问题,最终求解的线性互补问题的解,即为双边障碍问题的解。通过分析方法的收敛性,数值结果表明了方法的有效性。 A modulus-based matrix splitting method is presented for solving a two-side obstacle problem,which solves some sub-linear complementarity problems by using the matrix splitting method.The solution of the final sub-linear complementarity problems is the solution of the two-side obstacle problem.The convergence is given,and the numerical results show that the proposed method is effective.
作者 方贵炳 李郴良 FANG Guibing;LI Chenliang(School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China;Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guilin 541004, China)
出处 《桂林电子科技大学学报》 2018年第2期154-157,共4页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11661027) 广西自然科学基金(2015GXNSFAA139014)
关键词 双边障碍问题 模系矩阵分裂 线性互补问题 收敛 two-side obstacle problem modulus-based matrix splitting linear complementarity problem convergence
  • 相关文献

参考文献6

二级参考文献55

  • 1李董辉,曾金平.双边障碍问题的迭代法[J].数值计算与计算机应用,1994,15(3):194-199. 被引量:7
  • 2Mangasarian O L. Solution of symmetric linear complementarity problems by iterative methods[J]. J Opt Theory Appl, 1977, 22(4): 465-485.
  • 3Harker P T, Pang J S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory algorithms and applications[J]. Math Porg, 1990, 48:161-220.
  • 4Lin Y Y, Pang J S. Iterative methods for large convex quadratic programs: a survey[J]. SIAM J Control Opt, 1987, 25: 384-411.
  • 5Ortega J M, Rheinboldt W C. Iterative Solution of Nonlinear Equations in Several Variables[M]. New York: Academic Press, 1970.
  • 6Tseng P. Decomposition algorithm for convex differentiable minimization[J]. J Opt Theory Appl, 1991, 70: 109-136.
  • 7Luo Z Q, Tseng P. On the convergence of a matrix splitting algorithm for the symmetric monotone linear complementarity problem[J]. SIAM J Control Opt, 1991, 29:1037-1060.
  • 8Ostrowski A M. Solution of Equations and Systems of Equations[M]. Second Edition. New York: Academic Press, 1996.
  • 9Murty K G. On the number of solutions to the complementarity problem and spanning propertites of complementary cones[J]. Linear Algebra Appl, 1972, 5:65-108.
  • 10Hatrick P T, Pang J S. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory algorithms and applications[J]. Math. Prog., 1990, 48: 161-220.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部