摘要
在实际应用中,由于初始偏差、采样速率不同等原因,系统量测一般也非同步。多基地雷达数据通常面临异步数据融合问题。为了解决该问题,该文按照批处理的思路,联合一段时间内的多个异步数据对同一目标状态进行估计,并基于最优贝叶斯估计原理,提出了一种新的批估计数据融合准则;然后,依据该准则推导出了一种解析的分布式批估计方法;最后,针对非线性非高斯场景,提出了一套完备的粒子滤波实现方案。仿真结果表明,文中提出的方法相比现有方法具有跟踪精度高,计算量小等优点。
In practical applications, due to the different initial bias and sample rates of different muhi-static radars, usually, the ts of the system is non-synchronous. Therefore, there exists an annoying asynchronous data fusion problem in multi-radar data fusion. To address this problem, in this paper, we adopt the idea of batch processing, i.e. , utilizing the multiple asynchronous data during a period to estimate the same target state, and propose a batch estimation data fusion rule based on the optimal Bayesian estimation. Then, a distributed batch estimation approach is derived based on this rule. Finally, with regard to the nonlinear and non-Gaussian scenarios, a particle filtering based implementation of distributed batch estimation is derived. Simulation results show that our method has a better performance in tracking accuracy and computation cost comparing with the existing methods.
作者
黎明
王刚
易伟
孔令讲
LI Ming;WANG Gang;YI Wei;KONG Lingjiang(School of Electronis Engineering, University of Electronic Science and Technology, Chengdu 611731, China;Nanjing Changjiang Electronics Group Co. Ltd, Nanjing 210000, China)
出处
《现代雷达》
CSCD
北大核心
2018年第5期46-53,共8页
Modern Radar
关键词
多基地雷达
目标跟踪
数据融合
分布式批估计
粒子滤波
multi-static radar
target tracking
data fusion
distributed batch estimation
particle filtering