期刊文献+

在线视觉测量系统的刀具图像去抖动方法研究 被引量:1

Research on tool image deblurring method of online vision measurement system
下载PDF
导出
摘要 研究视觉采集图像时由于机床电动机振动导致的刀具图像抖动问题。对比研究3种经典图像去抖动方法,在自适应L-R算法的基础上,针对自适应L-R算法的耗时性,结合金字塔的结构,研究一种自适应L-R算法—金字塔相结合的去抖动方法,以图像复原质量的主观评价方法和客观评价参量为标准,对该算法的实现进行定性认识和定量分析。同时以实验室自主研发的在线视觉刀具测量系统为对象,对算法实现进行实验验证。此算法具有较高的PSNR值和MSE值,而且计算时间骤减。通过在线刀具图像的采集和算法的实现,验证此算法具有去抖效果。 To study the problem of tool image dithering is studied as a result of motor vibration of machine tools when visual images are collected. Aiming at the problem of image jitter,comparison of three kinds of classic image dithering method,on the basis of adaptive L-R algorithm,the time consuming problem of adaptive L-R algorithm is discussed,combined with the structure of Pyramid,an adaptive L-R algorithm of Pyramid combined to dither method,as to subjective evaluation and objective evaluation of the restoration quality parameters standard,qualitative analysis and quantitative understanding of the implementation of the algorithm. This algorithm has higher PSNR value and MSE value,and the computing time is greatly reduced. Through the online tool image acquisition and algorithm implementation,it is proved that the algorithm has the effect to reduce shake.
作者 杜文华 杨芳 曾志强 王俊元 段能全 王瑞倩 杨扬 DU Wenhua;YANG Fang;ZENG Zhiqiang;WANG Junyuan;DUAN Nengquan;WANG Ruiqian;YANG Yang(School of Mechanical and Power Engineering, North University of China, Taiyuan 030051, CHN;Fanshi Country Environmental Protection Bureau, Fanshi 034302)
出处 《制造技术与机床》 北大核心 2018年第5期118-121,共4页 Manufacturing Technology & Machine Tool
基金 山西省自然科学基金项目"高精度机器视觉尺寸测量系统的光源干扰研究"(201601D102025)
关键词 刀具图像 在线视觉测量 图像消抖 tool image online visual measurement image deblurring
  • 相关文献

参考文献1

二级参考文献10

  • 1Bonacci E,Santacroce N,D′Amico N,et al.Nail-fold capillaroscopy in the study of microcirculation in elderly hypertensive patients[J].Arch Gerontol Geriatr,1996,22(Suppl.1):79-83.
  • 2Chang CH,Tsai RK,Wu WC,et al.Use of dynamic capillaroscopy for studying cutaneous microcirculation in patients with diabetes mellitus[J].Microvas Res,1997,53(2):121-127.
  • 3Groner W,Winkelman JW,Harris AG,et al.Orthogonal polarization spectral imaging:a new method for study of the microcirculation[J].Nat Med,1999,5:1209-1212.
  • 4Goedhart PT,Khalilzada M,Bezemer R,et al.S idestream dark field (SDF) imaging:a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation[J].Opt Expr,2007,15(23):15101-15114.
  • 5Dobbe JGG,Streekstra GJ,Atasever B,et al.The measurement of functional microcirculatory density and velocity distributions using automated image analysis[J].Med Biol Eng Comput,2008,46(7):659-670.
  • 6Wu CC,Zhang G,Huang TC et al.Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation[J].Microvas Res,2009,78(3):319-324.
  • 7Demir S,Mirshahi N,Tiba MH,et al.Image processing and machine learning for diagnostic analysis of microcirculation[C/OL].International Conference on Complex Medical Engineering (CME).DOI:10.1109/ICCME.2009.4906669.
  • 8Dong G,Xie M.Color clustering and learning for image segmentation based on neural networks[J].IEEE Trans on Neur Netw,2005,16(4):925-936.
  • 9Kohonen T.The self-organizing map[J].Neuroco,1998,21:1-6.
  • 10Ultsch A,Siemon HP.Kohonen's seIf organizing feature maps for exploratory data analysis[C].Proceedings of International Neural Networks Conference (INNC),1990:305-308.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部