期刊文献+

一种新的融合BM25与文本特征的新闻摘要算法 被引量:9

A Novel News Summary Algorithm Combining BM25 and Text Features
下载PDF
导出
摘要 提出一种融合BM25与文本特征的新闻摘要算法。首先使用BM25算法计算TextRank算法中的句子相似度,其次选择词频和句子位置作为文本特征,最后将文本特征的评分与TextRank的评分相加作为文本中句子的评分,对所有的句子按照评分降序排列,选择评分最高的几个句子作为摘要。使用ROUGE工具在NLPCC2015数据集上进行测试,结果表明该方法有较好的效果。 This paper presents a news summary algorithm that combines BM25 and text features.Firstly,we use the BM25 algorithm to calculate the sentence similarity in the TextRank algorithm,then select the word frequency and sentence position as the text features,and take the text feature score and the TextRank score as the final score of the sentence in the text.Finally,we sort all the sentences in descending order according to the final score,and select the sentences with the highest scores as the news summary.The test results on the dataset of NLPCC2015 using ROUGE tools show that this method has a better performance.
作者 李楠 陶宏才 LI Nan;TAO Hong-cai(School of Information Science & Technology, Southwest Jiaotong University, Chengdu 611756,China)
出处 《成都信息工程大学学报》 2018年第2期113-118,共6页 Journal of Chengdu University of Information Technology
基金 国家自然科学基金资助项目(61505168)
关键词 BM25 TextRank 词频 图排序 ROUGE BM25 TextRank word frequency graph sort ROUGE
  • 相关文献

参考文献3

二级参考文献31

  • 1刘涛,吴功宜,陈正.一种高效的用于文本聚类的无监督特征选择算法[J].计算机研究与发展,2005,42(3):381-386. 被引量:37
  • 2耿焕同,蔡庆生,赵鹏,于琨.一种基于词共现图的文档自动摘要研究[J].情报学报,2005,24(6):651-656. 被引量:15
  • 3谭松波,王月粉.中文文本分类语料库-TanCorpv1.0[EB/OL].(2007-08-29)[2008-01-20].http://www.searehforum:org.cn/tansongbo/corpus.htm.
  • 4Ganapathiraju A, Hamaker JE, Picone J. Applications of support vec- tor machines to speech recognition[ J]. IEEE Trans. on Signal Process- ing, 2004,52(8 ) :2348 -2355.
  • 5Grishman R. Information extraction:Techniques and challenges [ M/ OL]. New Yol"k: New York University Press, 1997. Retrieved on A- pill 13, 2013, from http://link, springer, corn/chapter/10. 1007% 2F3-540-63438-X_2. DOI: 10. 1007/3-540-63438-x_2.
  • 6Hobbs J R. Information Extraction from Biomedical Text [ J ]. Journal of Biomedical lnformatics ,2002,35 (4) :260 - 264.
  • 7Scheffer T, Decomain C, Wrobel S. Active Hidden Markov Models for Information Extraction [ J ]. The Locture Notes in Computer Science, 2001:309 -318.
  • 8Freitag D, MeCallum A, Pereira F. Maximum Entropy Markov Models for Information Extraction and Segmentation[ C ]//Proceedings of IC- ML-2000:591 - 598.
  • 9Riloff E, Jones R. Learning Dictionaries for Information Extraction by Multi-Level Bootstrapping [ C ]//Proceedings of the Sixteenth National Conference on Artificial Intelligence, 1999:811 - 816.
  • 10Mikle D M, Miller S, Schwartz R. Nymble: a high-performance learn- ing name-finder[ C ]//Preeeedings of ANLP-97. 1997 : 194 - 201.

共引文献33

同被引文献65

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部