期刊文献+

Majid double双积的一种广义型(英文)

A Generalization of Majid's Double Biproduct
原文传递
导出
摘要 设H为双代数.σ:HH→A为线性映射,其中A为左H余模余代数,且是带有左H-弱作用的代数.τ:HB→B为线性映射,其中B为右H余模余代数,且是带有右H-弱作用的代数.本文给出双边交叉积A#_σH_τ#B和双边smash余积构成双代数的充要条件.这一结构包括了著名的Radford双积(见[J.Algebra,1985,92(2):322-347]),Majid double双积(见[Math.Proc.Cambridge Philos.Soc.,1999,125(1):151-192]),以及王栓宏、焦争鸣和赵文正定义的交叉积(见[Comm.Algebra,1998,26(4):1293-1303]). Let H be a bialgebra. Let σ : HH→A be a linear map, where A is a left H-comodule coalgebra, and an algebra with a left H-weak action. Let τ: HH→B be a linear map, where B is a right H-comodule coalgebra, and an algebra with a right H-weak action. In this paper, we provide necessary and sufficient conditions for the two-sided crossed product algebra A#σHτ#B and the two-sided smash coproduct coalgebra A×H×Bto form a bialgebra. The celebrated Radford's biproduct in [J. Algebra, 1985, 92(2): 322-347], Majid's double biproduct in [Math. Proc. Cambridge Philos. Soc., 1999, 125(1): 151-192] and the WangJiao-Zhao's crossed product in [Comm. Algebra, 1998, 26(4): 1293-1303] are all recovered from this.
作者 马天水 刘琳琳 MA Tianshui;LIU Linlin(School of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan, 453007, P. R. Chin)
出处 《数学进展》 CSCD 北大核心 2018年第3期401-412,共12页 Advances in Mathematics(China)
基金 supported by China Postdoctoral Science Foundation(No.2017M611291) the Foundation for Young Key Teacher by Henan Province(No.2015GGJS-088) the Natural Science Foundation of Henan Province(No.17A110007)
关键词 交叉积 Radford双积 double双积 crossed product Radford's biproduct double biproduct
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部