期刊文献+

一类锥约束变分不等式问题的最优性条件 被引量:1

Optimality Conditions for a Class of Variational Inequalities with Cone Constraints
原文传递
导出
摘要 利用像空间分析法,本文研究了带锥约束的变分不等式的最优性条件.利用Gerstewitz非线性标量化函数,给出了三个非线性弱分离函数、两个非线性正则弱分离函数和一个非线性强分离函数.然后,利用此分离函数,得到了带锥约束的变分不等式的弱或强的最优性条件. In this article, by using the image space analysis, optimality conditions for a class of variational inequalities with cone constraints are proposed. By virtue of the nonlinear scalarization function commonly known as the Gerstewitz function, three nonlinear weak separation functions, two nonlinear regular weak separation functions and a nonlinear strong separation function are introduced. Then, by these nonlinear separation functions, some optimality conditions of the weak and strong alternative for variational inequalities with cone constraints are derived.
作者 董文 张俊容 王逸云 黄拉 DONG Wen;ZHANG Junrong;WANG Yiyun;HUANG La(School of Mathematics and Statistics, Southwest University, Chongqing, 400715, P. R. China)
出处 《数学进展》 CSCD 北大核心 2018年第3期463-474,共12页 Advances in Mathematics(China)
基金 重庆市基础与前沿研究项目(No.cstc2016jcyjA0239)
关键词 约束变分不等式 像空间分析 非线性分离函数 最优性条件 variational inequalities with constraints image space analysis nonlinear sep-aration function optimality condition
  • 相关文献

参考文献1

二级参考文献1

共引文献4

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部