摘要
研究带有变阻尼和奇异扰动的随机振动方程的逼近问题,证明了当奇异扰动趋向0时,原方程的解由相应的确定性方程的解进行逼近。
The approximation of a stochastic vibration equation with variable damping and singular perturbation is studied in this paper. It is proved that when the singular perturbation tends to 0,the solution of the original equation is approximated by the solution of the corresponding deterministic equation.
作者
张亚娟
吕艳
ZHANG Ya-juan;LYU Yan(College of Science, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2018年第4期59-65,共7页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11671204)
关键词
变阻尼
随机振动方程
逼近
variable damping
stochastic vibration equation
approximation