摘要
本文研究了一类基于非线性抛物变分不等式问题,
{min{Lu,u-u0}=0,(x,t)∈ΩT,
u(x,0)=u0(x),x∈Ω,
u(x,t)=0,(x,t)∈ Ω×(0,T),其中L表示变指数退化抛物算子.通过新的惩罚函数和微分不等式级数,证明了该变分不等式解的存在性和唯—性.
AIn this paper, we study the existence and uniqueness of solutions to the following kind of variational inequalities {min{Lu,u-u0}=0,(x,t)∈ΩT,
u(x,0)=u0(x),x∈Ω,
u(x,t)=0,(x,t)∈ Ω×(0,T),where L is a degenerate parabolic operators with variable uniqueness results for the above variational inequalities are function and differential inequality technique. exponent. The existence and obtained by some new penalty function and differential inequality technique.
作者
李志广
康淑瑰
LI ZHIGUANG;KANG SHUGUI(School of Mathematics and Computer Science, Shanxi Datong University, Datong 037009, Chin)
出处
《应用数学学报》
CSCD
北大核心
2018年第3期289-304,共16页
Acta Mathematicae Applicatae Sinica
基金
山西省自然科学基金(No.2008011002-1)
山西省高等教育发展基金(No.20101109
20111020)资助项目
关键词
变分不等式
退化抛物算子
存在性
唯一性
惩罚方法
variational inequality
degeneate parabolic inequality
existence
uniquenesspenalty method