摘要
穿零问题是时间序列分析中的一个重要研究内容,被广泛应用于语音识别、信号探测等科学研究领域.统计学者已经给出了二阶自回归序列AR(2)的渐进穿零率与一阶渐进相关函数的关系,以及均方渐近穿零率与自回归序列AR(P)的特征根的关系等一系列研究成果.在此基础上,本文引入了白回归序列AR(P)的渐近穿带率(BCR)的概念,建立了序列的2邻点渐近穿带率与一阶渐近相关函数之间的关系.当带宽足够窄时,用2邻点穿带率可以近似穿带率,从而建立了渐近穿带率和一阶渐近相关函数与方差的关系式.
Zero-crossing rate (ZCR) is an important research content in time series analy- sis, and it is widely used in speech recognition, signal detection and other scientific research field. So far, many statistical scholars have proposed a series of research achievements, such as the relationship between asymptotic zero-crossing rate of 2th-oraer autoregressive process and lth-oraer asymptotic correlative function, and the relationship between the mean square asymptotic zero-crossing rate and the characteristic roots of Pth-oraer autoregressive pro- cesses, etc. In this paper the concept of asymptotic band-crossing rate (BCR) of Pth-oraer autoregressive processes is introduced and the relationship between the asymptotic BCR of 2 consecutive points and the lth-oraer asymptotic correlative function is investigated. In most cases, it brings about little error for taking the asymptotic BCR of 2 consecutive points as the asymptotic BCR as long as the band is chosen narrow enough. Further the links between the asymptotic BCR and the lth-oraer asymptotic correlative function and the variance are set up.
作者
王昕
程希明
WANG KIN;CHENG XIMING(School of Science, Beijing Information Science and Technology University, Beijing 100192, China)
出处
《应用数学学报》
CSCD
北大核心
2018年第3期337-346,共10页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(71501016)
北京信息科技大学勤信人才培育计划(QXTCP B201705)资助项目
关键词
渐近平稳序列
渐近相关函数
穿带率
asymptotic stationary process
asymptotic correlative function
band-crossing rate