摘要
证明了m增生映射的一个值域扰动结论并用于讨论一类含有广义p-Laplacian算子的非线性椭圆边值问题在L^2(Ω)中解的存在性.探究了非线性椭圆边值问题的解与m增生映射零点的关系.构造了迭代序列用以弱收敛或强收敛到非线性椭圆边值问题的解.本文采用了构造新算子和拆分方程的技巧,推广和补充了以往的相关研究成果.
A perturbation result on the ranges of m-accretive mappings is proved and used to show that a family of nonlinear elliptic boundary value problems with the generalized p-Laplacian operator have solutions in L2(Ω). The relationship between the solution and the zero point of a suitably defined nonlinear m- accretive mapping is investigated. Moreover, some iterative schemes are constructed to be weakly or strongly convergent to the solution. Some new techniques of constructing appropriate operators and decomposing the equations are employed, which extend and complement some of the previous work.
作者
魏利
樊树鑫
Ravi P.Agarwal
WEI LI;FAN SHUXIN(School of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang 050061, China)
出处
《应用数学学报》
CSCD
北大核心
2018年第3期356-368,共13页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(No.11071053)
河北省自然科学基金(No.A2014207010)
河北省教育厅科研重点项目(No.ZD2016024)
河北经贸大学科研重点项目(No.2016KYZ07)资助