期刊文献+

面向移动增强现实的手势交互方法 被引量:3

The Method of Hand Gesture Interaction Based on Depth Learning and Hidden Markov Model
下载PDF
导出
摘要 针对目前绝大多数移动设备无法感知深度信息,移动增强现实只能以触屏交互为主要手段这一问题,提出了一种基于深度学习及隐马尔可夫模型的手势交互方法(DL-HMM)。该方法利用深度传感器提取的骨骼特征和深度灰度图像,使用深度置信网络(DBN)和三维卷积神经网络(3DCNN)处理提取到的手势骨骼特征和深度图像特征融合成高维特征,采用隐马尔可夫模型的观测概率完成手势的训练和识别。实验结果表明本文提出的方法能有效提高手势识别率,提升了交互的准确性。 In view of the fact that the vast mobile devices can not sense the depth information at present,and mobile augmented reality can only be based on touch-screen interaction as the main method,this paper proposes a gesture interaction method based on depth learning and hidden Markov model(DL-HMM).The method utilizes the depth sensor to extract the skeleton features and depth grayscale images.And the extracted gesture skeletal features and depth image features are processed using a depth-of-confidence network(DBN)and a 3 Dconvolutional neural network(3 DCNN)merged into high-dimensional features.The hidden Markov model observation probability is used to complete the gesture training and recognition.The experimental results show that this method can effectively improve the accuracy of gesture recognition and interaction.
作者 梁欢 陈一民 李德旭 黄晨 Liang Huan;Chen Yimin;Li Dexu;Huang Chen(School of Computer Engineering and Science, Shanghai University, Shanghai 200444, Chin)
出处 《微型电脑应用》 2018年第5期9-13,共5页 Microcomputer Applications
基金 上海市科技创新行动计划项目资助(16511101200) 2015上海大学电影学院高峰学科项目(N13A30315W23)
关键词 移动增强现实 深度学习 隐马尔可夫模型 手势交互 Mobile augmented reality Deep learning Hidden Markov model Gesture interaction
  • 相关文献

参考文献5

二级参考文献36

  • 1Oulasvirta A, Tamminen S, Roto V, et al. Interaction in four-second bursts the fragmented nature of attentional re- sources in mobile HCI[A2. CHI 2005[C. ACM, 2005919 928.
  • 2Brewster S. Overcoming the lack of screen space on mobile computers[J]. Personal and Ubiquitous Computing , 2002,6 (3) 188-205.
  • 3Baek J, Yun BJ. A sequence action recognition applying state machine [or user interface[J]. Consumer Electronics, 2008, 54(2):719 726.
  • 4Atia A, Tanaka J. Interaction with tilting gestures in ubiqui- tous environments [J]. International Journal of UbiComp, 2010, 1(3)..1-13.
  • 5Kim K-E, Chang W, Cho SJ, et al. Hand grip pattern recog nition for mobile user interfaces I-A], American Association for Artificial Intelligence[C. AAAI, 2006 .. 1789-1794.
  • 6Choi S-D, Lee, A S, Lee S-Y. Online handwritten character recognition with 3D accelerometer]-A]. Information Acquisi tion[C. IEEE, 2006:845-850.
  • 7Choi E-S, Bang W-C, Cho SJ, et al. Beat box music phone: Gesture interactive cell phone using tri-axis aecelerometer EA. Industrial Technology, ICIT 2005 [-C]. IEEE, 2005 97-102.
  • 8Xu Zhang, Xiang Chen, Yun Li, et al. A framework for hand gesture recognition based on accelerometer and EMG sensors [J]. Systems, Man and Cybernetics, Part A Systems and Humans, 2009 1064 1076.
  • 9Jiayang Liu, Zhen Wang, Lin Zhong, et al. uWave: Acceler ometer-based Personalized Gesture Recognition and Its Ap plieationsEA. Pervasive Computing and Communications 2009[C]. IEEE, 2009,1 9.
  • 10Min JK, Choe B, Cho S-B. A selective template matching algorithm for short and intuitive gesture UI of accelerometer- built in mobile phones[A. Nature and Biologically Inspired Computing (NaBIC) [C. IEEE, 2010 : 660-665.

共引文献48

同被引文献53

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部