期刊文献+

水热法制备WO3纳米阵列及其在钙钛矿太阳电池中的应用(英文) 被引量:1

Preparation of WO3 Nanoarrays by Hydrothermal Method and Its Application in Perovskite Solar Cells
原文传递
导出
摘要 以不同浓度的钨源溶液通过水热法制备了W03纳米树叶阵列和W03纳米片阵列,并研究了其形貌、晶相和吸收光谱。基于WO3纳米树叶阵列作为骨架层的钙钛矿太阳电池实现了4.96%的光电转化效率(PCE),且开路电压(Voc)为0.48V,短路电流密度(Jsc)为19.66mA.cm-2,填充因子(fF)为0.52。基于WO3纳米片阵列的太阳电池的PCE,Voc,Jsc和fF分别为0.27%,0.14V,5.96mA·cm-2,0.32。WO3纳米阵列与空穴传输材料的直接接触增加了电子和空穴的复合,不利于电池的开路电压和填充因子。 WO3 nanoleaf arrays and WO3 nanosheet arrays were prepared by hydrothermal method at different tungsten source concentrations. The morphology, crystal phase and absorption spectra of WO3 nanoarrays were investigated. The perovskite solar cells based on WO3 nanoleaf arrays as a scaffold layer have a photoelectric conversion efficiency (PCE) of 4.96%, with an open-circuit voltage (Voc) of 0.48 V, a short-circuit photocurrent density (Jsc) of 19.66 mA·cm-2 and a fill factor (fF) of 0.52, and the solar cells based on WO3 nanosheet arrays have the PCE, Voc, Jso andfF of 0.27%, 0.14 V, 5.96 mA·cm-2 and 0.32, respectively. The direct contact between WO3 nanoarrays and the hole-transporting materials increases the recombination of hole and electron, thus resulting in relatively low values of Voc and fF.
作者 王艳青 聂林辉 吴妮 李龙 崔振东 史成武 WANG Yanqing;NIE Linhui;WU Ni;LI Long;CUI Zhendong;SHI Chengwu(Department of Chemical Engineering and Food Processing, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, Anhui, China;School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China)
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2018年第5期649-656,共8页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(51602089,51472071) 合肥工业大学校博士专项科研资助基金(JZ2014HGBZ0371) 合肥工业大学学术新人提升计划B项目(JZ2017HGTB0230)
关键词 氧化钨 纳米片阵列 纳米树叶阵列 水热法 钙钛矿太阳电池 tungsten oxide nanosheet array nanoleaf array hydrothermal method perovskite solar cells
  • 相关文献

参考文献1

二级参考文献31

  • 1Eperon (3 E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar ceils. Energy Environ Sci, 2014, 7:982.
  • 2Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (Version 45). Prog Photovolt: Res Appl, 2015, 23:1.
  • 3Minemoto T, Murata M. Theoretical analysis on effect of band offsets in perovskite solar cells. Sol Energ Mater Sol Cells, 2015, 133:8.
  • 4Jcon N I, Noh J H, Kim Y C, et al. Solvent engineering for high- performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13:897.
  • 5Zhou H, Chen Q, Li G, et al. Interface engineering of highly ef- ficient perovskite solar cells. Science, 2014, 345:542.
  • 6Xing G, Mathews N, Sun S, et al. Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342:344.
  • 7Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffu- sion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013,342:341.
  • 8lm J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3:4088.
  • 9Jeng J Y, Chen K C, Chiang T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar- heterojunction hybrid solar cells. Adv Mater, 2014, 26:4107.
  • 10Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3NH3PbI3/TiO2 hetero-junction solar cells. J Am Chem Soc, 2012, 134:17396.

共引文献1

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部