期刊文献+

分层递阶的网络结构洞占据者挖掘及分析 被引量:2

Mining Hierarchical Structural Holes of the Network and Its Analysis
下载PDF
导出
摘要 结构洞是在社会网络信息传播中占据重要位置的一类关键节点。据研究,5%的结构洞控制着50%的信息传播。学者们研究了单一粒度网络下结构洞的挖掘方法及分析,然而很多网络存在分层递阶的多粒度结构特性,对分层递阶网络的结构洞挖掘和分析具有现实意义。因此,该文提出了一种分层递阶网络的多粒度结构洞挖掘方法 HI-SH,并对不同粒度下的结构洞进行了分析。在该方法中,首先对网络进行多粒度社团划分,得到每一粒度下网络的社团;然后,根据两级信息传播理论,使用单一粒度下结构洞挖掘算法,挖掘每一粒度下top-k结构洞。在公用数据Topic16和真实数据上进行了实验,结果表明,网络的结构洞是动态变化的,单一粒度下的结构洞排名不能代表整个网络的结构洞排名。 In social networks,structural holes refer to a class of nodes which occupy the important position in the information diffusion.According to the study,5% of structural holes control 50% of the information diffusion.The researchers have studied how to mine structural holes under a single granularity,however,there are a lot of networks,whose structure with hierarchical multi-granularity.So,it is of great significance to mine and make an analysis of the structural holes of the network under the multi-granularity.In this paper,a method named HI-SH is proposed to mine multi-granularity structural holes of the network with hierarchical structure.Furthermore,some analysis of structural holes under the multi-granularity are also given based on this method.In this method,firstly,we detect the community of the network in each hierarchical granularity.Then,according to the theory of two-step information diffusion,structural holes mine algorithm is used to mine top-k structural holes in each granularity.Experiments on public data Topic16 and real data show that structural holes of the network are dynamical and structural holes ranking under single granularity can not represent the rank order all granularities of the network.
作者 崔平平 赵姝 陈洁 钱付兰 张以文 张燕平 CUI Pingping;ZHAO Shu;CHEN Jie;QIAN Fulan;ZHANG Yiwen;ZHANG Yanping(Anhui University Library, Anhui University, Hefei, Anhui 230601, China;Center of Information Support and Assurance Technology, Anhui University, Hefei, Anhui 230601,China;School of Computer Science ~ Technology, Anhui University, Hefei, Anhui 230601, China)
出处 《中文信息学报》 CSCD 北大核心 2018年第4期95-104,共10页 Journal of Chinese Information Processing
基金 国家自然科学基金(61402006 61175046) 国家高技术研究发展计划(863计划)(2015AA124102-6) 安徽省自然科学基金(1508085MF113) 教育部留学回国人员科研启动基金(第49批) 安徽大学高层次人才需求计划项目
关键词 结构洞 多粒度 分层递阶网络 社团划分 structural holes multi-granularity hierarchical network community detection
  • 相关文献

参考文献4

二级参考文献42

  • 1中国互联网络信息中心.第31次中国互联网络发展状况统计报告[R].北京,2013.
  • 2Robert M Bond,et al. A 61-million-person experiment in social influence and political mobilization [J]. Na- ture, 2012, 489(7415): 295-298.
  • 3Johan Bollen, Huina Mao. Twitter Mood as a Stock Market Predictor [J]. Computer, 2011, 44(10): 91- 94.
  • 4David Kempe, Jon Kleinberg, Eva Tardos. Maximi- zing the spread of influence through a social network [C]//Proceedings of the 9th ACM SIGKDD interna- tional conference on knowledge discovery and data min- ing. Washington, D.C. 2003.
  • 5Jeremy Ginsberg, et al. Detecting influenza epidemics using search engine query data [J]. Nature, 2009. 457 (7232) : 1012-1014.
  • 6Jimeng Sun, Jie Tang. A Survey of Models and Algo- rithms for Social Influence Analysis IMP. Social Net- work Data Analytics. C. C. Aggarwal, Springer US, 2011 : 177-214.
  • 7Lti Linyuan, Chen Duan-Bing, Zhou Tao. The small world yields the most effective information spreading [J]. New Journal of Physics, 2011, 13(12) .. 123005.
  • 8Lti Linyuan, et al. Leaders in Social Networks, the De- licious Case [J]. PLoS ONE, 2011, 6(6) : e21202.
  • 9Jie Tang, Tiancheng Lou, Jon Kleinberg. Inferring social ties across heterogenous networks [C]//Pro- ceedings of the 5th ACM international conference on Web search and data mining. Seattle, Washington, USA, ACM, 2012.. 743-752.
  • 10Johan Ugander,et al. Structural diversity in social con- tagion [J]. Proceedings of the National Academy of Sciences, 2012, 109(16): 5962-5966.

共引文献217

同被引文献26

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部