摘要
目的:研究基于心率变异性(HRV)的脑力疲劳状态的发展变化趋势及评测指标。方法:采用睡眠剥夺的方式诱导脑力疲劳,提取受试者在不同时间安静放松状态下的心电信号的HRV指标,并结合主观疲劳程度与注意力网络任务(ANT)结果研究脑力疲劳的发展变化趋势和评测指标。结果:随着睡眠剥夺时长的增加,受试者的主观疲劳程度逐渐加重,ANT的正确率下降且平均反应时间显著增加,但心率与HRV指标受昼夜节律影响呈现出与主观疲劳程度和ANT结果不同的变化趋势;人体处于脑力疲劳状态时心率下降,HRV指标显著上升。结论:在考虑昼夜节律的情况下,综合心率、HRV指标与ANT结果等多维度信息,可能对昼夜节律规律人群由睡眠剥夺引起的脑力疲劳状态实现更有效的评测。
Objective To study the development trend and evaluation index of mental fatigue based on heart rate variability(HRV). Methods Mental fatigue was induced by sleep deprivation. The HRV parameters of electrocardiogram signals of subjects in a quiet and relaxed state were extracted. In different time points, the HRV parameters in combination with subjective fatigue levels and attentional network task(ANT) results were applied to research the development trend and evaluation index of mental fatigue. Results As the duration of sleep deprivation increased, the subjective fatigue level of subjects gradually increased; the correct rate of ANT dropped and the mean reaction time increased significantly. However,the heart rate and HRV index affected by circadian rhythm showed a trend of changes different from subjective fatigue levels and ANT results. Heart rate decreased and HRV index increased significantly in the mental fatigue state. Conclusion Considering the circadian rhythm and multi-dimensional information such as heart rate, HRV index and ANT results, it is possible to make a more effective evaluation of mental fatigue caused by sleep deprivation in circadian rhythm groups.
作者
赵小静
路海月
王梦悦
耿新玲
张宽
李霞
ZHAO Xiaojing;LU Haiyue;WANG Mengyue;GENG Xinling;ZHANG Kuan;LI Xia(School of Biomedical Engineering, Capital Medical University, Beijing 100069, China;Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China)
出处
《中国医学物理学杂志》
CSCD
2018年第5期592-597,共6页
Chinese Journal of Medical Physics
基金
国家自然科学基金青年基金(61302035)
首都医科大学校自然基金(2016ZR13)
关键词
脑力疲劳
睡眠剥夺
心率变异性
主观疲劳程度
注意力网络任务
mental fatigue
sleep deprivation
heart rate variability
subjective fatigue level
attentional network task