期刊文献+

单纯形算法的两种部分定价策略

Two Partial Pricing Strategies for the Simplex Algorithm
原文传递
导出
摘要 根据Hu和Johnson的原始一对偶单纯形算法原理,提出了两种部分定价策略.给定一组原始一对偶可行解,首先,选择与原始问题简约价值系数为负且对偶松弛变量取零值相应的非基变量作为部分定价变量,再用Dantzig准则的单纯形算法求解该原始子问题.其次,针对原始退化问题,选择相应于原始问题简约价值系数小于某个适当小正数的非基变量进行部分定价,然后应用Bland准则的单纯形算法求解原始子问题,以克服退化可能引起的循环现象.最后,对来自NETLIB和MIPLIB的一些典型算例执行初步数值试验,结果表明,与经典单纯形算法相比,提出的算法具有更好的计算表现. Based on the principle of the primal-dual simplex algorithm from Hu and Johnson, this paper presents two partial pricing strategies for the simplex algorithm. Given a set of primal and dual feasible solutions, first of all, the nonbasic variables corresponding to the reduced costs with the nonnegative value at the primal basis and the dual relaxed variables with zero are selected as the partial pricing ones, and then the simplex algorithm by Dantzig rule is applied to solve the associated linear subprograms. Next, for degenerate problems, the nonbasic variables corresponding to the reduced costs smaller than one positive number are used to perform the partial pricing, and then the simplex algorithm by Bland rule is applied to solve the associated linear subprograms. So, cycling is avoided. Finally, numerical test on some standard instances from NETLIB and MIPLIB is accomplished. The computational results show that comparing to the classical simplex algorithm, our algorithms are better in computational performance.
作者 王洋 张萍 WANG Yang;ZHANG Ping(Department of Public Teaching, Sichuan Vocational and Technical College of Communications, Chengdu 611130, China;Geophysical College, Chengdu University of Technology, Chengdu 610059, China;College of Administrative Science, Chengdu University of Technology, Chengdu 610059, China)
出处 《数学的实践与认识》 北大核心 2018年第10期119-126,共8页 Mathematics in Practice and Theory
基金 四川省教育厅课题:四川省非川籍高校毕业生就业区域流向及影响因素研究(16ZB0380)
关键词 线性规划 单纯形法 部分定价 Dantzig准则 Bland准则 计算表现 linear programming simplex method partial pricing dantzig rule bland rule computational performance
  • 相关文献

参考文献3

二级参考文献40

  • 1唐焕文,张立卫.求解线性规划的极大熵方法[J].计算数学,1995,17(2):160-172. 被引量:15
  • 2李苏北.求解线性规划问题的区间调节熵方法[J].系统工程与电子技术,2007,29(6):990-993. 被引量:1
  • 3Avis D, Chvatal V. Notes on bland's pivoting rule[J]. Mathematical Programming Study, 1978, 8: 24-34.
  • 4Balinski M L, Tucker A W. Duality theory of linear programs: a constructive approach with applications[J1. SIAM Review, 1969, 11(3): 347-377.
  • 5Bland R G. New finite pivoting rules for the simplex method[J]. Mathematics of Operations Research, 1977, 2: 103-107.
  • 6Charnes A. Optimality and degeneracy in linear programming[J]. Econometrica, 1952, 20: 160- 170.
  • 7Garcia P G, Palomo A S. Phase I cycling under the most-obtuse-angle pivot rule[J]. European Journal of Operational Research, 2005, 167: 20-27.
  • 8Gass S I, Vinjamuri S. Cycling in linear programming problems[J]. Computers &Operations Research, 2004, 31: 303-311.
  • 9Hoffman A J. Cycling in the simplex algorithm[R]. Washington, DC: National Bureau of Standards, 1953.
  • 10Pan P Q. Practical finite pivoting rules for the simplex method[J]. OR Spektrum, 1990, 12: 219- 225.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部