期刊文献+

二面体群在一般线性群GL(2,C)中的同构类刻画 被引量:2

On Isomorphic Classes of Dihedral Groups in the General Linear Group GL(2,C)
原文传递
导出
摘要 对两个生成元的非交换有限群在GL(2,C)中的同构矩阵表示以二面体群巩为例进行了探索研究.一方面,利用生成元的特征值为单位根这一特性,采用矩阵对的方法,根据生成元的生成关系对二面体群D。在一般线性群GL(2,C)中的所有同构对象进行了完全刻画.另一方面,对这些同构对象在相似等价的意义下进行了分类,发现这些类的数量为欧拉函数值φ(n)的一半. In this paper we investigate how a finite non-abelian group of two generators isomorphically represents in GL(2, C) through non-abelian dihedral groups Dn. On one hand, by generating relations of generators of On and the fact that eigenvalues of generators of finite groups are roots of unity, all isomorphic representations of dihedral groups Dn in general linear group GL(2, C) are completely described by using pairs of matrices. On the other hand, all these representations are classified on the condition of similar equivalence, we find the number of these classes is half of the value of euler function φ(n) for n 〉 2.
作者 侯汝臣 史江涛 HOU Ru-chen;SHI Jiang-tao(School of Mathematics and Information Science, Yantai University, Yantai 264005, Chin)
出处 《数学的实践与认识》 北大核心 2018年第10期255-260,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(11371307) 国家自然科学基金(11201401,11561021) 山东省高等学校科技计划项目(J16LI02) 山东省自然科学基金(ZR2017MA022)
关键词 二面体群 一般线性群 同构对象 相似等价 欧拉函数 Dihedral group general linear group isomorphic object similar equivalence euler function
  • 相关文献

参考文献4

二级参考文献13

  • 1GUO JinYun School of Mathematics and Computational Sciences, Xiangtan University, Xiangtan 411105, China.On the McKay quivers and m-Cartan matrices Dedicated to Professor LIU ShaoXue on the occasion of his 80th birthday[J].Science China Mathematics,2009,52(3):511-516. 被引量:6
  • 2Assem I, Simson D, Skowronski A. Elements of the Representation Theory of Associative Algebras. Cambridge: Cambridge University Press, 2006.
  • 3Auslander M, Reiten I, Smal S. Representation theory of Artin algebras. In: Cambridge Studies in Advanced Mathematics, vol. 36. Cambridge: Cambridge University Press, 1994, 111 118.
  • 4Fuller K R. Generalized uniserial rings and their Kupisch series. Math Z, 1968, 106:248-260.
  • 5Happel D, Seidel U. Piecewise hereditary Nakayama algebras. Algebr Rep Theory, 2010, 13:693 704.
  • 6Kupisch H. Beitrage zur Theorie nichthalbeinfacher Ringe mit Minimalbedingung. Crelles J, 1959, 201:100 112.
  • 7Muchtadi-Alansyah I. Braid action on derived cateroy Nakayama algebras. Comnmn Algebras, 2008, 36:2544 2569.
  • 8Nakayama T. Note on uniserial and generalized uniserial rings. Proc Imp Akad Japan, 1940, 16:285-289.
  • 9Reiten I. The use of almost split sequences in the representation theory of Artin algebras. In: Lecture Notes in Mathematics, vol. 944. Berlin-New York: Springer-Verlag, 1982, 29-104.
  • 10Skowronski A. Tame triangular matrix algebra over Nakayama algebra. J Lond Math Soc, 1986, 2:245-264.

共引文献7

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部