期刊文献+

三维空间中一类双曲向量场的光滑线性化

Smooth Linearization of a Class of Hyperbolic Vector Fields on R^3
原文传递
导出
摘要 讨论了R3中Poincare型双曲向量场的光滑线性化问题,具体地给出了当特征值之间存在共振关系时,向量场的非线性部分满足可以线性化的充分条件. In this paper we present some sufficient conditions for a class of hyperbolic vector fields to be smoothly linearizable.
作者 阿布迪夏克尔·吐力拜克 Abdixaker·Tolewbek(Department of Mathematics, Yili Normal University, Yining 835000, Chin)
出处 《数学的实践与认识》 北大核心 2018年第10期285-288,共4页 Mathematics in Practice and Theory
基金 新疆维吾尔自治区“十三五”重点学科(数学)开放课题(XJZDXK-M2017017)
关键词 双曲向量场 微分方程 线性化 共振 hyperbolic vector field differential equation linearization resonance
  • 相关文献

参考文献1

二级参考文献11

  • 1[1]Arnold V I.Geometrical Methods in the Theory of Ordinary Differential Equations.New York:Springer-Verlag,1983
  • 2[2]Sternberg S.On the Structure of Local Homomorphisms of Euclidean n-space I,Amer.J Math,1958,80:623~631
  • 3[3]Hartman P.Ordinary Differential Equation (2nd ed).Boston-Basel-Stuttgart:Birkhuser,ⅩⅤ,1982
  • 4[4]Palis J,de Melo J W.Geometric Theory of Dynamical Systems.New York:Springer-Verlag,1982
  • 5[5]Arnold V I,Il'yashenko Yu S.Ordinary Differential Equations,in Dynamical Systems,Vol.1,Encyclopaedia Math Sci 1,Berlin:Springer,1988
  • 6[6]Samovol V S.Linearization of Systems of Ordinary Differential Equations in a Neighbourhood of Invariant Toroial Manifolds.Proc Moscow Math Soc,1979,36:187~219
  • 7[7]Belitskii G R.Normal Forms,Invariants,and Local Mappings.Naukova Dumka:Kiev,1979[Russian]
  • 8[8]Bruno A D.On Finitely Smooth Linearization of a System of Differential Equations near a Hyperbolic Singular Point.Doklady AN SSSR,1991,318(3):524~527
  • 9[9]Stowe D.Linearization in Two Dimensions.J Diff Equ,1986,63(2):183~226
  • 10[10]Bronstein I U,Kopanskii A Ya.Smooth Invariant Manifolds and Normal Forms.Singapore:World Scientific,1994

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部