期刊文献+

基于改进的粒子群算法的云资源调度策略 被引量:18

Cloud Resource Schedling Strategy Based on Improved Particle Swarm Optimization
下载PDF
导出
摘要 云计算资源的调度是云计算中的一项关键技术.针对粒子群算法存在易陷入局部最优解和"早熟"的缺陷,提出一种改进的粒子群算法.通过改进粒子迭代过程中社会项系数和认知项系数的权重变化,使算法更符合最优解的求解规律,避免陷入局部最优解.仿真实验表明,改进后的粒子群算法适应度更强、收敛速度更快,具有更强的全局搜索能力.该算法可以有效提高云计算资源的利用率,具有良好的应用价值. Cloud resource scheduling strategy is the most important technology in cloud computing.In order to solve the problem of being easy to to fall into locally optimal solution,we proposed an improved particle swarm optimization algorithm(IPSO).Coefficient about social and personal cognition are changed according to the times of iteration,which can comply with objective rules much better and avoid falling to locally optimal solution.Simulation results show that IPSO can improve the availability of cloud resources.It has higher global search ability,better fitness,and good application value.
作者 蔡晓丽 钱诚 CAI Xiao-li;QIAN Cheng(School of Information & Engineering, Changzhou Institute of Technology, Changzhou 213002,China)
出处 《微电子学与计算机》 CSCD 北大核心 2018年第6期28-30,35,共4页 Microelectronics & Computer
基金 国家自然科学基金(61602063) 常州工学院课题(A3-4403-17-011)
关键词 云计算 粒子群算法 资源调度 迭代 适应度 cloud computing particle swarm optimization resource scheduling iteration fitness
  • 相关文献

参考文献4

二级参考文献54

  • 1杜琼,周一届.新的进化算法——文化算法[J].计算机科学,2005,32(9):142-144. 被引量:15
  • 2李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 3Foster I, Zhao Y, Raicu I, et al. Cloud computing and grid com- puting 360-degree compared[ A]. Proc of the Grid Computing Environments Workshop, GCE 2008 [ C ]. New York: IEEE, Press, 2008.1 - 10.
  • 4Buyya R, Yeo C S, Venugopal S, et al. Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility [ J ]. Future Generation Computer Systems,2009,25(6) :599 - 616.
  • 5Armbrust M, Fox A, Griffith R, et al. A view of cloud computing[J]. Communications of the ACM,2010,53(4) :50 - 58.
  • 6Mell P, Grance T. The NIST definition of cloud computing[J]. Communications of the ACM,2010,53(6) :50.
  • 7Wei G Y, Vasilakos A V, Zheng Y, et al. A game-theoretic method of fair resource allocation for cloud computing services [ J] .Journal of Supercomputing,2010,54(2) :252 - 269.
  • 8Zhao G, Liu J, Tang Y, et al. Cloud computing: A statistics aspect of users[ A]. Proc of the First International Conference of Cloud Computing, CloudCom 2009 [ C ]. Heidelberg: Springer Verlag Press, 2009. 347 - 358.
  • 9Shen X, Guo Y, Chen Q, et al. A multi-objective optimization evolutionary algorithm inciting preference information based on fuzzy logic[J]. Computational Optimization and Ap- plications, 2010,46( 1 ) : 159 - 188.
  • 10Ulker E,Arslan A.Automatic knot adjustment using an artificial immune system for B-spline curve approximation[ J]. Information Sciences,2009,179(10) : 1483 - 1494.

共引文献111

同被引文献150

引证文献18

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部