期刊文献+

全空间上具有临界指数的Kirchhoff类方程两个正解的存在性 被引量:5

Existence of two positive solutions for Kirchhoff-type equations with critical exponents in whole space
下载PDF
导出
摘要 本文在参数的不同范围及给定假设下利用Ekeland变分原理、山路引理、集中紧性原理和一些分析技巧得到了全空间上具有临界指数的非线性项和非齐次扰动项的Kirchhoff类方程两个正解的存在性. Under the suitable ranges of parameters and given assumptions and by using Ekeland varia- tions principle, Mountain Pass Lemma, concentration compactness lemma and some analysis techniques, Kirchhoff-type equations with critical exponents and nonhomogeneous perturbation nonlinearities in R3 are studied. Existence results of two positive solutions are obtained.
作者 丁凌 汪继秀 张丹丹 DING Ling;WANG Ji-Xiu;ZHANG Dan-Dan(School of Mathematics and Computer Science, Hubei University of Arts and Science, Xiangyang 441053, China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期457-461,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金青年基金(11501186)
关键词 Kirchhoff类方程 临界指数 EKELAND变分原理 山路引理 集中紧性原理 Kirchhoff-type equations Critical exponents Ekeland variations principle Mountain Pass Lemma Concentration compactness lemma
  • 相关文献

参考文献2

二级参考文献19

  • 1吴红萍.二阶Dirichlet边值问题的正解[J].甘肃科学学报,2007,19(1):53-55. 被引量:5
  • 2Perera K, Zhang Z T. Nontrivial solutions of Kirch-hoff-type problems via the Yang index [J]. J DiffEq, 2006’ 221:246.
  • 3Zhang Z T,Perera K. Sign changing solutions ofKirchhoff type problems via invariant sets of descentflow [J], J Math Anal Appl,2006,317:456.
  • 4Cheng B T,Wu X. Existence results of positive so-lutions of Kirchhoff problems [J], Nonlinear Anal,2009,71: 4883.
  • 5Yang Y,Zhang J H. Nontrivial solutions of a classof nonlocal problems via local linking theory [J].Appl Math Lett, 2010,23:377.
  • 6Yang Y,Zhang J H. Positive and negative solutionsof a class of nonlocal problems[J]. Nonlinear Anal,2010, 23:377.
  • 7Sun J J,Tang C L. Existence and multiplicity of so-lutions for Kirchhoff type equations [J]. NonlinearAnal, 2011,74-1212.
  • 8Mao A M,Zhang Z T. Sign-changing and multiplesolutions of Kirchhoff type problems without the P.S. condition [J]. Nonlinear Anal, 2009,70:1275.
  • 9He X M,Zou W M. Infinitely many positive solu-tions for Kirchhoff-type problems [J]. Nonlinear A-nal, 2009, 70:1407.
  • 10Sun J J,Tang C L. Resonance problems for Kirch-hoff type equations [J]. Discrete and ContinuousDynamical Systems, 2013,33(5):2139.

共引文献6

同被引文献7

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部