期刊文献+

基于NodeRank算法的产品特征提取研究 被引量:5

Extracting Product Features with NodeRank Algorithm
原文传递
导出
摘要 【目的】基于自然语言处理技术和复杂网络相关理论,提出新的产品特征识别方法,提高产品特征的抽取效果。【方法】构建产品特征–情感词对的二分加权网络,从网络视角更加清晰、直观地描述产品特征词和情感词之间的关系。然后提出NodeRank算法对产品特征词进行重要性排序,提高特征词提取的准确率。【结果】通过对京东商城中真实评论数据的仿真实验,结果表明NodeRank算法产品特征提取的准确率、召回率和F-score都高于HAC、TF-IDF和TextRank等基准算法。【局限】NodeRank算法的计算复杂度偏高,需要进一步优化。【结论】NodeRank算法是一种准确有效的特征提取方法,能够为产品特征提取、产品营销等商业活动提供支持。 [Objective] This paper presents a novel algorithm based on the NLP technique and complex network theory, aiming to extract product features more effectively. [Methods] First, we constructed a weighted bipartite graph with the product features and sentiment words, which described their relationship more clearly and intuitively from network perspective. Then, we proposed the NodeRank algorithm to rank the importance of product features, which improved the precision of feature extraction. [Results] We examined the proposed algorithm with data from jd.com, a popular online shopping site in China. The precision, recall and F-score of the NodeRank algorithm were better than the HAC, TF-IDF and Text Rank methods. [Limitations] The computational complexity of our new algorithm needs to be optimized. [Conclusions] The NodeRank algorithm could effectively extract the product features, which supports marketing and other business activities.
作者 周立欣 林杰 Zhou Lixin;Lin Jie(School of Economics and Management, Tongji University, Shanghai 200092, Chin)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2018年第4期90-98,共9页 Data Analysis and Knowledge Discovery
基金 国家自然科学基金项目"社交媒体中用户创新价值度测量模型及互动创新管理方法研究"(项目编号:71672128) 中央高校基本科研业务费专项资金项目"基于大数据的社交网络传播机理与模型研究"(项目编号:1200219368)的研究成果之一
关键词 特征词抽取 二分网络 NodeRank算法 重要性排序 Feature Extraction Bipartite Graph NodeRank Algorithm Importance Ranking
  • 相关文献

参考文献2

二级参考文献12

  • 1YE Qiang LI Yijun ZHANG Yiwen.Semantic-Oriented Sentiment Classification for Chinese Product Reviews: An Experimental Study of Book and Cell Phone Reviews[J].Tsinghua Science and Technology,2005,10(z1):797-802. 被引量:7
  • 2王永贵,韩顺平,邢金刚,于斌.基于顾客权益的价值导向型顾客关系管理——理论框架与实证分析[J].管理科学学报,2005,8(6):27-36. 被引量:32
  • 3姚天昉,聂青阳,李建超,李林琳,陈柯,付宁.一个用于汉语汽车评论的意见挖掘系统[C]//中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集.北京:清华大学出版社,2006:260-281.
  • 4Hong Yu, Vasileios Hatzivassiloglou. Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences [C]//Proceedings of EMNLP 2003,2003: 129-136.
  • 5Ellen Riloff, Janyce Wiebe, William Phillips. Exploiting subjectivity classification to improve information extraction [ C ]//Proceedings of AAAI-2005, 2005: 1106-1111.
  • 6Minqing Hu,Bing Liu. Mining opinion features in customer reviews[C]//Proceedings of AAAI-2004,2004: 755-760.
  • 7倪茂树,林鸿飞.基于关联规则和极性分析的商品评论挖掘[C]//第三届全国信息检索与内容安全学术会议,2007:635-642.
  • 8Soo-Min Kim,Eduard Hovy. Automatic detection of opinion bearing words and sentences[C]//Proceedings of IJCNLP-2005,2005 : 61-66.
  • 9Jun Zhao,Kang Liu,GenWang. Adding redundant features for crfs based sentence sentiment classification [C]//Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, 2008: 117-126.
  • 10Minqing Hu, Bing Liu. Mining and summarizing customer reviews [C]//Proceedings of KDD-2004, 2004 : 168-177.

共引文献216

同被引文献112

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部