期刊文献+

基于正方形描述符和LSSVM的三维人脸区域标记

3D face region labeling based on square descriptor and LSSVM
下载PDF
导出
摘要 提出了一种基于正方形切平面描述符的三维人脸模型区域标记算法。新的描述符由三维人脸模型顶点的正方形切平面区域内的几何信息编码而成。通过最小二乘支持向量机算法(LSSVM)对其进行学习,对三维模型上所有顶点进行分类,实现了对三维人脸模型上眉毛、眼睛、鼻子、嘴巴等区域的识别和标记。定位仿真实验中,分类准确率可达92.35%。所提描述符具有旋转、头部姿势、三维模型分辨率不变性,对模型的噪声具有鲁棒性。实验结果表明:提出的方法能有效标记三维人脸模型区域。 A 3D face region labeling algorithm based on square tangent plane descriptors is proposed. This new descriptor is obtained by encoding the geometric information in the square area on the surface of 3D face mesh model. It is learnt by the least squares support vector machine (LSSVM) algorithm to realize the classification of the vertex on 3D face model, so as to identify and mark the eyebrows, eyes, nose, mouth and other regions. Simulation result can achieve a classification accuracy of 92.35 %. The proposed descriptor has rotation, head pose,3D model resolution invarianee and it has robustness to noise. Experimental results show that the proposed method can effectively mark the 3D face model region.
作者 陈智 董洪伟 曹攀 CHEN Zhi;DONG Hong-wei;CAO PAN(College of Internet of Things Engineering,Jiangnan University, Wuxi 214122, China)
出处 《传感器与微系统》 CSCD 2018年第5期40-43,共4页 Transducer and Microsystem Technologies
关键词 语义标记 三维人脸 网格标记 最小二乘支持向量机 正方形切平面描述符 semantic marking 3 D face mesh labeling least squares support vector machine (LSSVM) square tangent plane descriptor
  • 相关文献

参考文献2

二级参考文献63

  • 1柳杨.三维人脸识别算法综述[J].系统仿真学报,2006,18(z1):400-403. 被引量:7
  • 2Zhao W, Chellappa R, Phillips P J, et al. Face recognition: a literature survey [J]. ACM Computing Surveys, 2003, 35 (4) : 399-458
  • 3Galton F. Numeralised profiles for classification and recognition[J]. Nature, 1910, 83(2109): 127-130
  • 4Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces, a survey [J]. Proceedings of the IEEE, 1995, 83(5): 705-741
  • 5Phillips P J, Flynn P J, Scruggs T, et al. Overview of the face recognition grand challenge [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, 2005, 1 : 947-954
  • 6Lee J C, Milios E. Matching range images of human faces [C]//Proceedings of International Conference on Computer Vision, Osaka, 1990:722-726
  • 7Nagamine T, Uemura T, Masuda I. 3D facial image analysis for human identification[C]//Proceedings of International Conference on Pattern Recognition, Hague, 1992:324-327
  • 8Bowyer K W, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi modal 2D + 3D face recognition [J]. Computer Vision and Image Understanding, 2006, 101(1).. 1-15
  • 9Gordon G. Face recognition based on depth and curvature features [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Champaign, 1992:808-810
  • 10Hesher C, Srivastava A, Erlebacher G. A novel technique for face recognition using range imaging [C]//Proceedings of the 7th International Symposium on Signal Processing and Its Applications, Paris, 2003:201-204

共引文献316

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部