期刊文献+

基于卷积神经网络的实时跟踪算法 被引量:5

Real-time tracking algorithm based on CNN
下载PDF
导出
摘要 利用卷积神经网络(CNN)强大的特征学习能力,提出了一种基于卷积神经网络的实时跟踪算法。通过对双通道卷积神经网络进行离线训练,学习相邻两帧之间的差异,得到跟踪目标的表观特征与运动之间的普遍规律。在不需要对网络模型在线更新的情况下,直接通过网络回归得到对目标的位置和对应置信度的预测。在VOT2014数据集中进行实验,结果表明:提出的跟踪算法的性能达到了当前领先水平。同时,跟踪算法的运行速度可以达到90帧/s,表现出非常不错的实时性。 A real-time tracking algorithm based on convolutional neural network(CNN) is proposed,using strong capabilities of feature learning of CNN. In this algorithm, a generial rule between motion and appearance features of tracking target is obtained, by offline training on 2-channel CNN , difference of two adjacent frames is learned, directly by network regresses obtain prediction of location of the target and the confidence score. In case of no online update is required. Results of experiment on VOT2014 dataset show that performance of the proposed tracking algorithm achieves the state-of-the-art, at the same time,it operates at a very high speed of 90 frames-per- second,which show good realtime performance.
作者 程朋 刘鹏程 程诚 周祥东 石宇 CHENG Peng;LIU Peng-cheng;CHENG Cheng;ZHOU Xiang-dong;SHI Yu(University of Chinese Academy of Sciences, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China)
出处 《传感器与微系统》 CSCD 2018年第5期144-146,共3页 Transducer and Microsystem Technologies
基金 中国科学院先导专项项目(XDA0640102)
关键词 目标跟踪 卷积神经网络 离线训练 置信度 target tracking convolutional neural network(CNN) offline training confidence
  • 相关文献

同被引文献17

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部