期刊文献+

幂律流体Wilhelmy吊片法动态湿润的理论与实验研究 被引量:2

Theoretical and Experimental Study on Dynamic Wetting of Power Law Fluid Under Wilhelmy Plate Method
原文传递
导出
摘要 幂律流体的黏度由于会随着剪切应变的变化而变化,其动态湿润机理比牛顿流体更加复杂。本文通过简化的二维吊片法模型,采用楔形区假设和黏性耗散理论建立了适用于幂律流体中剪切稀化流体吊片法湿润的表面张力驱动力和黏性滞动力动态平衡条件下的理论公式,并进行实验.通过对比,发现二维吊片法的理论公式与实验数据符合良好,并计算出楔形区截断长度的大致量级;分析了圆形三相接触线下该公式适用性较差的原因,定性解释了三相接触线形状对幂律型非牛顿流体湿润的影响. Since the viscosity of the power law fluid varies with the shear strain, its mechanism of dynamic wetting is more complex than the Newtonian fluid. By using wedge region hypothesis and viscous dissipation theory under the simplified two-dimensional model, the theoretical formula was established for shear thinning fluids of power law fluid in Wilheliny plate wetting which driving force and braking force dynamic reach the equilibrium condition. The corresponding experiment was conducted, it was found that the theoretical formula was in good agreement with the experimental data, and the approximate magnitude of truncated length was calculated. Meanwhile, the reason for the poor applicability of the formula under the circular contact line is analyzed, and the influence of the shape of three phase contact line on the wetting of power law fluid is qualitatively explained.
作者 王雄 闵琪 张征明 段远源 WA.NG Xiong;MIN Qi;ZHANG Zheng-Ming;DUAN Yuan-Yuan(Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsingtma University, Beijing 100084, China;Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua Universit35 Beijing 100084, China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2018年第6期1186-1190,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51676113 No.51621062)
关键词 Wilhelmy吊片法 动态接触角 幂律流体 截断长度 三相接触线形状 wilhehny plate method dynamic contact angle power law fluid truncated length theshape of three phase contact line
  • 相关文献

参考文献1

二级参考文献9

  • 1Kistler S F. Hydrodynamics of Wetting [C]// Berg J C. Wettability. New York: Marcel Dekker, 1993:311-429.
  • 2Min Qi, Duan Yuanyuan. Does Macroscopic Flow Geome- try Influence Wetting Dynamic [J]. Journal of Colloid and Interface Science, 2011, 362(1): 221-227.
  • 3Carr~ A, Eustache F. Spreading Kinetics of Shear- Thinning Fluids in Wetting and Dewetting Modes [J]. Langmuir, 2000, 16(6): 2936-2941.
  • 4Wang X D, Lee D J, Peng X F, et al. Spreading Dynamics and Dynamic Contact Angle of Non-Newtonian Fluids [J]. Langmuir, 2007, 23(15): 8042-8047.
  • 5Carr6 A, Woehl P. Spreading of Silicone Oils on Glass in Two Geometries [J]. Langmuir, 2006, 22(1): 134-139.
  • 6Carr6 A, Woehl P. Hydrodynamic Behavior at the Triple Line of Spreading Liquids and the Divergence Problem [J]. Langmuir, 2002, 18(9): 3600-3603.
  • 7Blake T D, Haynes J M. Kinetics of Liquid/Liquid Dis- placement [J]. Journal of Colloid and Interface Science, 1969, 30(3): 421-423.
  • 8Blake T D. Dynamic Contact Angles and Wetting Kinetics [C]// Berg J C. Wettability. New York: Marcel Dekker, 1993:251-309.
  • 9Blake T D. The Physics of Moving Wetting Lines [J]. Jour- nal of Colloid and Interface Science, 2006, 299(1): 1 13.

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部