期刊文献+

短程有序结构中光的吸收特性研究

Study on Light Absorption in Disordered Media With Short-range Order
原文传递
导出
摘要 本文研究了短程有序程度对二维新型超齐构模型(SHU)和传统的硬盘堆积模型(HD)吸收能力的调控作用。首先,在不同的纳米孔数目条件下,两种结构对尺寸效应的敏感程度不同。孔数目的变化对HD结构的吸收特性的影响较小,SHU结构的吸收能力随着纳米孔数目的增多不断增强最终趋于稳定。短程有序程度的增加会增强特定波段的布拉格散射强度,使得吸收图谱出现逐渐增强的吸收峰,吸收能力进一步提高.与HD结构相比,SHU结构的吸收图谱对短程有序程度的变化更加敏感,且整体吸收能力优于HD结构.本文对于研究光在无序介质中的吸收和散射特性具有重要的理论和应用价值。 We investigates the role of short-range order in manipulating light absorption in disordered materials with short-range order by comparing two types of disordered structures, including stealthy hyperuniform(SHU) structures and hard disk(HD) structures. Firstly, in the case of structures with different number of nanoholes, the absorptivity of two structures show different performance. HD structures are not sensitive to the system sizes, while the integrated absorption of SHU structures is improved with the number of holes increasing. Besides, as the degree of short-range order increases,the strength of Bragg scattering can be enhanced, leading to pronounced absorption peaks and further enhancing absorption in certain wavelengths. Compared with the HD structures, SHU structures are more sensitive to the degree of short-range order, showing relatively better absorption ability when considering the integrated absorption. The present study paves a way to control light absorption and scattering using novel disordered materials.
作者 刘梦琦 王博翔 方兴 陈霞雯 赵长颖 LIU Meng-Qi;WANG Bo-Xiang;FANG Xing;CHEN Xia-Wen;ZHAO Chang-Ying(Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai 200240, Chin)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2018年第6期1297-1302,共6页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.51476097 No.51306111) 上海市重点基础研究项目(No.16JC1403200)
关键词 超齐构结构 吸收增强 短程有序 布拉格散射 stealthy hyperuniform structures absorption enhancement short-range order braggscattering
  • 相关文献

参考文献1

二级参考文献7

  • 1Tsakalakos L, Balch J, Pronheiser J. Strong Broad- band Optical Absorption in Silicon Nanowire Film [Jl. J Nanophotonics, 2007, 1:013552-1-10.
  • 2Stelzner T, Pietsch M, Andra G, et al. Silicon nanowire- based solar cells [J]. Nanotechnology, 2008, 19:295203-1-4.
  • 3Taflove A, Hagness S. Computational Eelectrodynamics: The Finite-Difference Time-Domain Method, 2nd ed [M]. Norwood, Artech House, 2000:67-106.
  • 4Ikeda K, Miyazaki H T, Kasaya T. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanoeavities [J]. Appl. Phys. Lett, 2008, 92:021117-1-3.
  • 5Carsten R, Falk L. Photon management by metallic nan- odiscs in thin film solar cells [J]. Appl. Phys, Lett, 2009, 94:213102-1-3.
  • 6Vivian E. F, Luke A. Sk, Domenico P, et al. Plasmonic Nanostructure Design for Efficient Light Coupling into So- lar Cells [J]. Nano Lett, 2008, 12(8): 4391-4397.
  • 7Tsakalakos L, Balch J, Fronheiser J, et al. Silicon Nanowire Solar Calls [J]. Appl Phys Lett, 2007, 91: 233117-1-3.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部