期刊文献+

基于有序编码的核极限学习顺序回归模型 被引量:3

Ordered Code-based Kernel Extreme Learning Machine for Ordinal Regression
下载PDF
导出
摘要 顺序回归是机器学习领域中介于分类和回归之间的有监督问题。在实际中,许多带有序关系标签的问题都可以被建模成顺序回归问题,因此顺序回归受到众多学者的关注。基于极限学习机(ELM)的算法能有效避免因迭代过程陷入的局部最优解,减少训练时间,但基于极限学习机的算法在顺序回归问题上的研究较少。该文将核极限学习机与纠错输出编码相结合,提出了一种基于有序编码的核极限学习顺序回归模型。该模型有效解决了如何在顺序回归中取得良好的特征映射以及如何避免传统极限学习机中隐层节点个数依赖于人工设置的问题。为验证提出模型的有效性,该文在多个顺序回归数据集上进行了测试,测试结果表明,相比于传统ELM模型,该文提出的模型在准确率上平均提升了10.8%,在数据集上预测表现最优,而且获得了最短的训练时间,从而验证了模型的有效性。 Ordinal regression is one of the supervised learning issues,which resides between classification and regression in machine learning fields.There exist many real problems in practice,which can be modeled as ordinal regression problems due to the ordering information between labels.Therefore ordinal regression has received increasing interest by many researchers recently.The Extreme Learning Machine(ELM)-based algorithms are easy to train without iterative algorithm and they can avoid the local optimal solution; meanwhile they reduce the training time compared with other learning algorithms.However,the ELM-based algorithms which are applied to ordinal regression have not been exploited much.This paper proposes a new ordered code-based kernel extreme learning ordinal regression machine to fill this gap,which combines the kernel ELM and error correcting output codes effectively.The model overcomes the problems of how to get high quality feature mappings in ordinal regression and how to avoid setting the number of hidden nodes by manual.To validate the effectiveness of this model,numerous experiments are conducted on a lot of datasets.The experimental results show that the model can improve the accuracy by 10.8% on average compared with traditional ELM-based algorithms and achieve the stateof-the-art performance with the least time.
作者 李佩佳 石勇 汪华东 牛凌峰 LI Peijia;SHI Yong;WANG Huadong;NIU Lingfeng(School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 101408, China;Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China;Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190, China;School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第6期1287-1293,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(71110107026 71331005 91546201 11671379 111331012) 中国科学院大学资助项目(Y55202LY00)~~
关键词 纠错输出编码 顺序回归 极限学习机 核函数 Error correct output code Ordinal regression Extreme learning machine Kernel function
  • 相关文献

参考文献2

二级参考文献73

  • 1李建武,魏海周,宋玉龙.ECOC多分类器实现的最小封闭球模型[J].计算机研究与发展,2011,48(S3):22-30. 被引量:1
  • 2蒋艳凰,赵强利,杨学军.一种搜索编码法及其在监督分类中的应用[J].软件学报,2005,16(6):1081-1089. 被引量:13
  • 3陶晓燕,姬红兵.一种基于SOM解码的多类支持向量机[J].系统工程与电子技术,2006,28(9):1447-1450. 被引量:3
  • 4T G Dietterich, G Bakiri. Solving. Multi-class learning problemsvia error-correcting output codes[J] .Journal of Artificial Intel- ligence Research, 1995,34 ( 2 ) : 263 - 286.
  • 5T G Dietterich,G Bakiri, Error-correcting output codes:A gen- eral method for improving multiclass inductive learning pro- grants[A]. Proceedings of the Ninth National Conference on Artificial Intelligence[C]. Menlo Park, San Francisco: AAAI, 1991.572 - 577.
  • 6T G Dietterich, E Kong. Error correcting output codes corrects bias and variance[A]. Proceedings of the 21th Intemafional Conference on Machine Learning[C]. San Francisco: AAAI, 1995.313 - 321.
  • 7F MasuUi G Valentini. Effectiveness of error correcting output coding methods in ensemble and monolithic learning machines [J]. Pattern Anal Applic, 2003,65(6) :285 - 300.
  • 8Crammer K, Singer Y.On the leamability and design of output codes for mulficlass problems [A]. Proceedings of the Thir- teenth Annual Conference on Computational Learning Theory [C]. Boston: Kluwer Academic Publishers, 2000. 896 - 909.
  • 9T Windeatt,R Ghaderi. Binary labelling and decision level fu- sion[J] .Information Fusion, 2001,2( 1 ) : 103 - 112.
  • 10E Tapia, P Bulacio, L Angelone. Recursive classification [J]. Pattern Recognition letters, 2010,31 (3) : 210 - 215.

共引文献16

同被引文献24

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部