期刊文献+

基于深度卷积神经网络的低剂量CT肺部去噪 被引量:12

Low Dose CT Lung Denoising Model Based on Deep Convolution Neural Network
下载PDF
导出
摘要 为了降低低剂量CT肺部噪声对肺癌筛查后期诊断的影响,该文提出一种基于深度卷积神经网络的低剂量CT肺部去噪算法。以完整的CT肺部图像作为输入,池化层对输入图像进行降维处理;批规范化解决随着网络深度的增加性能降低的问题;引入残差学习,学习模型中每一层的残差,最后输出去噪图像。与经典去噪算法实验结果对比,所提方法在解决去噪方面达到了很好的滤波效果,同时也较好地保留了肺部图像的细节信息,大大优于传统的去噪算法。 In order to reduce the effect of low dose CT lung noise on the late diagnosis of lung cancer screening,a denoising model of low-dose CT lung based on deep convolution neural network is proposed.The input of the model is the complete CT lung image.The pooling layer reduces the dimension of input.Batch normalization works out the poor performance with the increase of network depth.The residuals of each layer are learned with residual learning.Finally,the denoised image is produced.Compared with classical methods,the proposed method achieves good filtering effect in solving the denoising method,and also retaining the details of lung image information,which is much better than the traditional filtering algorithm.
作者 吕晓琪 吴凉 谷宇 张明 李菁 Lü Xiaoqi;WU Liang;GU Yu;ZHANG Ming;LI Jing(Inner Mongolia University of Technology, Hohhot 010051, China;School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第6期1353-1359,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61771266 61179019) 内蒙古自治区自然科学基金(2015MS0604) 包头市科技计划项目(2015C2006-14) 内蒙古自治区高等学校科学研究项目(NJZY145)~~
关键词 卷积神经网络 诊断 肺部去噪 残差学习 批规范化 Convolution Neural Network (CNN) Diagnosis Lung denoising Residual learning Batch normalization
  • 相关文献

参考文献7

二级参考文献44

  • 1Yazdi M, Beaulieu L. Artifacts in spiral X-ray CT scanners: problems and solutions [ J ]. Proc World Acad Sci Eng Technol, 2007, 26(3) :376-380.
  • 2Wang J, Lu H, Wen J, et al. Multiscale penalized weighted least-squares sinogram restoration for low-dose X-Ray computed tomography [ J ]. IEEE Transactions on Biomedical Engineering, 2008, 55(3): 1022- 1031.
  • 3Rust G F, Aurich V, Reiser M. Noise/dose reduction and image improvements in screening virtual colonosco- py with tube currents of 20mAs with nonlinear Gaussian filter chains [J ]. Proc SPIE Int Soc Opt Eng, 2002, 4683 : 186 - 197.
  • 4Olshausen B A, Field D J. Emergence of simple-cell re- ceptive field properties by learning a sparse code for natu- ral images [J]. Nature, 1996, 381(6583):607-609.
  • 5Starck J L, Candes E J, Donoho D L. The curvelet transform for image denoising [ J ]. IEEE Transactions on Image Processing, 2002, 11 (6) :670 - 684.
  • 6Wakin M B, Romberg J K, Choi H, et al. Wavelet-do- main approximation and compression of piecewise smooth images [ J ]. IEEE Transactions on Image Pro- cessing, 2006, 15 (5) : 1071 - 1087.
  • 7Needell D, Tropp J A. CoSaMP: iterative signal recov- ery from incomplete and inaccurate samples [ J ]. Ap- plied and Computational Harmon Analysis. 2009, 26 (3) :301 -321.
  • 8Engan K, Aase S O, Hankon H J. Method of optimal directions for flame design [ C ]// Proceedings of 1999 IEEE International Conference on Acoustics, Speech and Signal Processing. Phoenix, AZ, USA, 1999:2443 - 2446.
  • 9Aharon M, Elad M, Bruckstein A. The K-SVD: an al- gorithm for designing overcomplete dictionaries for sparse representation[ J ]. IEEE Transactions on Signal Processing, 2006, 54 ( 11 ) :4311 - 4322.
  • 10Blumensath T, Davies M. Sparse and shift-invariant representations of music [ J ]. IEEE Transactions on Speech Audio Processing, 2006, 14( 1 ) :50 -55.

共引文献1860

同被引文献103

引证文献12

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部