期刊文献+

基于粒子滤波与样本加权的压缩跟踪算法

Compressive Tracking Algorithm Based on Particle Filter and Sample Weighting
下载PDF
导出
摘要 该文针对压缩跟踪算法无法适应目标尺度的变化以及没有考虑样本权重的问题,提出一种基于粒子滤波与样本加权的压缩跟踪算法。首先,对压缩特征进行改进,提取归一化矩形特征用于构建目标表观模型。然后,引入样本加权的思想,根据正样本与目标之间距离的不同赋予正样本不同的权重,提高分类器的分类精度。最后,在粒子滤波的框架下融合尺度不变压缩特征进行动态状态估计,在粒子预测阶段利用2阶自回归模型对粒子状态进行估计与预测,借助观测模型对粒子状态进行更新,并且对粒子进行重采样以防止粒子退化。实验结果表明,相比于原始压缩跟踪算法,改进算法能够更好地跟踪目标尺度的变化,提高跟踪的稳定性和准确性。 To solve the problem that Compressive Tracking(CT) algorithm is unable to adapt to the scale change of the object and ignores the sample weight,an optimized compressive tracking algorithm based on particle filter and sample weighting is presented.Firstly,the compressive feature is improved for building a target apparent model with normalized rectangle features.Then,the thought of sample weighting is utilized.In order to increase the precision of the classifier,different weights are given to the positive samples in accordance with the different distances between the positive samples and the object.Finally,the dynamic state estimation is made under the particle filter frame with integrating the scale invariant feature.At the phase of particle prediction,a second-order autoregressive model is utilized to obtain the estimation and prediction of the particle state.The particle state is updated with the observation model.The particles resampling is used to prevent the degradation of particles.Experimental results demonstrate that the improved algorithm can adapt to the scale change of object,and the accuracy and stability of the compressive tracking algorithm is improved.
作者 张红颖 王赛男 胡文博 ZHANG Hongying;WANG Sainan;HU Wenbo(College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, Chin)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第6期1397-1403,共7页 Journal of Electronics & Information Technology
基金 天津市自然科学基金青年基金(12JCQNJC00600) 中央高校基本科研业务费(3122015C016) 国家自然科学基金民航联合研究基金(U1533203)~~
关键词 压缩跟踪 粒子滤波 样本加权 分类器 Compressive Tracking (CT) Particle filter Sample weighting Classifier
  • 相关文献

参考文献5

二级参考文献121

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 2邹海荣,龚振邦,罗均.无人飞行器地面移动目标跟踪系统研究现状与展望[J].宇航学报,2006,27(B12):233-236. 被引量:5
  • 3Zhang S P, Yao H X, Sun X, Lu X S. Sparse coding based visual tracking: review and experimental comparison. Pattern Recognition, 2013, 46(7): 1772-1788.
  • 4Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 13.
  • 5Maggio E, Cavallaro A. Video Tracking: Theory and Practice. West Sussex: Wiley, 2011.
  • 6Yoo S, Kim W, Kim C. Saliency combined particle filtering for aircraft tracking. Journal of Signal Processing Systems, 2013, doi: 10.1007/s11265-013-0803-x.
  • 7Itti L, Koch C. Computational modelling of visual attention. Nature Reviews Neuroscience, 2001, 2(3): 194-203.
  • 8Frintrop S, Rome E, Christensen H I. Computational visual attention systems and their cognitive foundations: a survey. ACM Transactions on Applied Perception, 2010, 7(1): 1-39.
  • 9Frintrop S. Computational visual attention. Computer Analysis of Human Behavior. London: Springer, 2011. 69101.
  • 10Borji A, Itti L. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185-207.

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部