期刊文献+

Ferromagnetic element microalloying and clustering effects in high B_s Fe-based amorphous alloys 被引量:2

Ferromagnetic element microalloying and clustering effects in high B_s Fe-based amorphous alloys
原文传递
导出
摘要 Fe83(Cox,Niy)(B11Si2P3C1)1-x,y/17(x,y=1–3)amorphous alloys with high saturation magnetic flux density(Bs)and excellent soft-magnetic properties were developed and then the microalloying and clustering effects were explored.The microalloying of Co and Ni improves the Bsfrom 1.65 T to 1.67–1.72 T and 1.66–1.68 T,respectively.The Ni-doped alloys exhibit better soft-magnetic properties,containing a low coercivity(Hc) of about 5.0 A/m and a high Effective permeability(μe)of(8–10)×10^3,whereas the microalloying of Co leads to a deteriorative Hc of 5.0–13.0 A/m and a μeof(5–8)×10^3.Moreover,microalloying of Ni can increase the ductile-brittle transition(DBT)temperature of the ribbons,while a totally opposite effect is found in the Co-doped alloys.The formation of dense α-Fe(Co,Ni)clusters during annealing process is used to explain the distinct effects of Co and Ni microalloying on the magnetic properties and bending toughness. Fe83(Cox,Niy)(B11Si2P3C1)1-x,y/17(x,y=1–3)amorphous alloys with high saturation magnetic flux density(Bs)and excellent soft-magnetic properties were developed and then the microalloying and clustering effects were explored.The microalloying of Co and Ni improves the Bsfrom 1.65 T to 1.67–1.72 T and 1.66–1.68 T,respectively.The Ni-doped alloys exhibit better soft-magnetic properties,containing a low coercivity(Hc) of about 5.0 A/m and a high Effective permeability(μe)of(8–10)×10^3,whereas the microalloying of Co leads to a deteriorative Hc of 5.0–13.0 A/m and a μeof(5–8)×10^3.Moreover,microalloying of Ni can increase the ductile-brittle transition(DBT)temperature of the ribbons,while a totally opposite effect is found in the Co-doped alloys.The formation of dense α-Fe(Co,Ni)clusters during annealing process is used to explain the distinct effects of Co and Ni microalloying on the magnetic properties and bending toughness.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第5期793-798,共6页 材料科学技术(英文版)
基金 mainly supported by the National Natural Science Foundation of China (Grant Nos.51601206,51671206) Ningbo International Cooperation Projects (Grant No.2015D10022) Ningbo Major Project for Science and Technology (Grant No.201401B1003003)
关键词 Amorphous alloy MICROALLOYING High Bs Domain structure CLUSTER Amorphous alloy Microalloying High Bs Domain structure Cluster
  • 相关文献

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部