期刊文献+

强泛G-投射模,强泛G-内射模和强泛G-平坦模

Strongly Universal G-Projective,Injective and Flat Modules
原文传递
导出
摘要 【目的】完善相对同调理论中对强泛G-投射模、强泛G-内射模和强泛G-平坦模的研究。【方法】利用同调方法讨论了许多相关性质,举例给出了一个模是强泛G-投射模但不是强G-投射模。【结果】给出了强泛G-投射模(或强泛G-平坦模)是强G-投射模(或强G-平坦模)的充分条件,利用强泛G-投射模、强泛G-内射模和强泛G-平坦模的概念,刻画了强G-半单环、强G-Von Neumann正则环和强G-遗传环。【结论】补充了已有文献关于强泛G-投射模、强泛G-内射模和强泛G-平坦模性质的研究。 [Purposes]To complete the research of strongly universal G-projective modules,injective andflat modules in relative homology theory. [Methods] Many related properties are discussed by homology method. An example is given to show that a module is a strongly universal G-projective module,but not a SG-projective module. [Findings]A sufficient condition is giving to show that strong universal G-projective module( or strong universal G-flat mode) is SG-projective( or SG-flat),the SG-semisimple ring,SG-Von Neumann regular ring and SG-hereditary ring are characterizedare characterized in terms of strongly universal G-projective,injective and flat modules. [Conclusions]The study of strongly universal G-projective modules,injective modules and flat modules is supplemented in existing papers.
作者 陈东 胡葵 CHEN Dong;HU Kui(College of Information Science and Engineering, Chengdu University, Chengdu 610106;College of Science, Southwest University of Science and Technology, Mianyang Sichuan 621010, China)
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期124-129,共6页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11671283) 教育部博士点专项基金(No.20125134110002)
关键词 强泛G-投射模 强泛G-内射模 强泛G-平坦模 strongly universal G-projective modules strongly universal G-injective modules strongly universal G-flat modules
  • 相关文献

参考文献1

二级参考文献9

  • 1Lam T Y. Lectures on modules and rings[M]. NewYork: Springer-Verlag, 1999.
  • 2Lee S B. n-coherent rings[J]. Communications in Algebra, 2002,30(3) : 1119-1126.
  • 3Costa D L. Parameterizing families of non-Noetherian rings [J]. Comm Algebra, 1994,22 (10) : 3997-4011.
  • 4Zhou D X. On n-coherent rings and (n,d)-rings[J]. Comm Algebra,2004,32(6) :2425-2441.
  • 5Enochs E E,Jenda O M G. Gorenstein injective and projec- tive modules[J]. Math Z, 1995,220(2) : 611-633.
  • 6Enochs E E,Jenda O M G. Gorenstien flat modules[J]. J Nanjing Univ Math Biquart, 1993,10 ( 1 ) : 1-9.
  • 7Gao Z H ,Wang F G. Coherent rings and Gorenstein FP-in- jective modules[J]. Commu in Algebra,2012,40(2):1669- 1679.
  • 8Zhu Z. On n-coherent rings,n-hereditary rings and n-regu- lar rings[J]. Bulletin of the Iranian Mathematical Society, 2011,37(4) : 251-267.
  • 9Rotman J J. An introdution to homological algebra [M]. New York : Academic Press, 1979.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部