期刊文献+

应用于高分辨率遥感影像配准的SIFT特征均匀分布算法

A Uniformly Distributed SIFT Algorithm for Registration of High-resolution Remote Sensing Images
下载PDF
导出
摘要 高分辨率遥感影像配准要求提取出稳定且分布均匀的同名点,但是传统的SIFT算法没有考虑特征点的空间分布情况,提取的特征点往往分布不均匀。针对高分辨率遥感影像数据的特点,提出了一种自适应控制SIFT特征均匀分布算法,利用局部纹理特征,并结合最优化筛选策略,在保证特征点稳定性和准确性的同时,控制特征点在不同空间的分布情况,实现sIFT特征点在图像空间和尺度空间的合理分布。分别采用了常规和多视角航空高分辨率遥感影像进行试验,试验结果表明,算法能够有效控制提取特征点的分布,具有一定的抗噪声干扰能力。 Registration of high-resolution remote sensing images requires stable and uniformly distributed homologous points,but feature points extracted by traditional scale-invariant feature transform(SIFT) algorithm are usually unevenly distribu- ted for lack of consideration of spatial distribution. Based on local texture features, an auto-adaptive uniformly distributed SIFT matching algorithm for high-resolution remote sensing images is proposed, and an optimization selection strategy is adopted to guarantee the reliability and accuracy and control the spatial distribution of feature points. As a result, the SIFT feature points can be uniformly distributed both in image space and scale space. Experiments are conducted with conventional and multi-view high- resolution remote sensing images respectively, and result shows that the algorithm can effectively control the distribution of feature points and resist noise interference.
作者 秦进春 张丽 宋睿 龚辉 Qin Jinchun;Zhang Li;Song Rui;Gong Hui(Xi'an Research Institute of Surveying and Mapping, Xi'an 710054, China;State key Laboratory of Geo-Information Engineering,Xi'an 710054, China;Unit 61243, Urumchi 830002 ,China)
出处 《测绘科学与工程》 2018年第1期33-37,78,共6页 Geomatics Science and Engineering
关键词 遥感影像匹配 SIFT特征 均匀分布 分布质量 remote sensing image matching SIFT feature uniform distribution distribution quality
  • 相关文献

参考文献2

二级参考文献21

  • 1N Sebe,M S Lew.Comparing salient point detectors[J].Pattern Recognition Letters,2003,24(1-3):89-96.
  • 2C Schmid,R Mohr,C Bauckhage.Evaluation of interest point detectors[J].International Journal of Computer Vision,2000,37(2):151-172.
  • 3S Baker,S K Nayar.Global measures of coherence for edge detector evaluation[A].Proceedings of the Conference on Computer Vision and Pattern Recognition[C].Fort Collins,Colorado,USA,1999.373-379.
  • 4P Brand,R Mohr.Accuracy in image measure[A].Proceedings of the SPIE Conference on Videometrics III[C].Boston,Massachusetts,USA,1994.Vol.2350,218-228.
  • 5C Harris,M Stephens.A combined corner and edge detector[A].Proceedings of 4th Alvey Vision Conference[C].Manchester,England,1988.147-151.
  • 6Y Zhong,H F Zhang.Control points based semi-dense matching[A].Proceedings of the 5th Asian Conference on Computer Vision[C].Melbourne,Australia,2002.137-144.
  • 7J J Koenderink,A J van Doorn.Representation of local geometry in the visual system[J].Biological Cybernetics,1987,55(6):367-375.
  • 8H P Moravec.Towards automatic visual obstacle avoidance[A].Proceedings of the 5th International Joint Conference on Artificial Intelligence[C].Cambridge,Massachusetts,USA,1977.584.
  • 9W F(o)rstner.A framework for low level feature extraction[A].Proceedings of the 3rd European Conference on Computer Vision[C].Stockholm,Sweden,1994.383-394.
  • 10Hamada T, Kato K,Kawakami K.Extracting facial features as in infants[J].Pattem Recognition Letters,2000,21 (5):407-412.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部