期刊文献+

Eigenvalues under the Backward Ricci Flow on Locally Homogeneous Closed 3-manifolds

Eigenvalues under the Backward Ricci Flow on Locally Homogeneous Closed 3-manifolds
原文传递
导出
摘要 In this paper, we study the evolving behaviors of the first eigenvalue of the Laplace- Beltrami operator under the normalized backward Ricci flow, construct various quantities which are monotonic under the backward Ricci flow and get upper and lower bounds. We prove that in cases where the backward Ricci flow converges to a sub-Riemannian geometry after a proper rescaling, the eigenvalue evolves toward zero. In this paper, we study the evolving behaviors of the first eigenvalue of the Laplace- Beltrami operator under the normalized backward Ricci flow, construct various quantities which are monotonic under the backward Ricci flow and get upper and lower bounds. We prove that in cases where the backward Ricci flow converges to a sub-Riemannian geometry after a proper rescaling, the eigenvalue evolves toward zero.
作者 Song Bo HOU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第7期1179-1194,共16页 数学学报(英文版)
基金 Supported by NSFC(Grant No.11001268) Chinese Universities Scientific Fund(Grant No.2014QJ002)
关键词 Homogeneous 3-manifold backward Ricci flow EIGENVALUE estimate Homogeneous 3-manifold backward Ricci flow eigenvalue estimate
  • 相关文献

参考文献1

二级参考文献18

  • 1Hamilton, R. S.: Three manifolds with positive Ricci curvature. J. Diff. Geom., 17(2), 255-306 (1982).
  • 2Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/ 0211159v1(2002).
  • 3Cao, X. D.: Eigenvalues of (-△ + R/2) on manifolds with nonnegative curvature operator. Math. Ann., 337(2), 435-441 (2007).
  • 4Li, J. F.: Eigenvalues and energy functionals with monotonicity formulae under Rieci flow. Math. Ann., 338(4), 927-946 (2007).
  • 5Cao, X. D.: First eigenvalues of geometric operators under the Ricci flow. Proc. Amer. Math. Soc., 136, 4075-4078 (2008).
  • 6Ma, L.: Eigenvalue monotonicity for the Ricci-Hamilton flow. Ann. Glob. Anal. Geom., 29, 287-292 (2006).
  • 7Grosjean, J. F.: p-Laplace operator and diameter of manifolds. Ann. Glob. Anal. Geom., 28, 257-270 (2005).
  • 8Kawai, S., Nakauchi, N.: The first eigenvalue of the p-Laplacian on a compact Riemannian manifold. Nonlin. Anal., 55, 33-46 (2003).
  • 9Kotschwar, B., Ni, L.: Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula. Ann. Sci. Ec. Norm. Sup., 42(1), 1-36 (2009).
  • 10Ma, L., Chen, D. Z., Yang, Y.: Some results on subelliptic equations. Acta Mathematica Sinica, English Series, 22(6), 1965 -1704 (2006).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部