摘要
Based on the first-principles plane wave calculations, we show that Li adsorbed on monolayer and bilayer MoS2 forming a uniform and stable coverage can serve as a high-capacity hydrogen storage medium, and Li-coated MoS2 can be recycled by operations at room temperature due to Li having strength binding, big separation and is stable against clustering. The full Li coverage MoS2 system(2 * 2 hexagonal MoS2 supercell) can reach up to eight H2 molecules on every side, corresponding to the gravimetric density of hydrogen storage up to 4.8 wt% and 2.5 wt% in monolayer and bilayer MoS2, respectively. The adsorption energies of hydrogen molecules are in the range of 0.10 e V/H2–0.25 e V/H2,which are acceptable for reversible H2 adsorption/desorption near ambient temperature. In addition, compared with light metals decorated low dimension carbon-based materials, the sandwiched structure of MoS2 exhibits the greatly enhanced binding stability of Li atoms as well as slightly decreased Li-Li interaction and thus avoids the problem of metal clustering.It is interesting to note that the Li atom apart from the electrostatic interaction, acts as a bridge of hybridization between the S atoms of MoS2 and adsorbed H2 molecules. The encouraging results show that such light metals decorated with MoS2 have great potential in developing high performance hydrogen storage materials.
Based on the first-principles plane wave calculations, we show that Li adsorbed on monolayer and bilayer MoS2 forming a uniform and stable coverage can serve as a high-capacity hydrogen storage medium, and Li-coated MoS2 can be recycled by operations at room temperature due to Li having strength binding, big separation and is stable against clustering. The full Li coverage MoS2 system(2 * 2 hexagonal MoS2 supercell) can reach up to eight H2 molecules on every side, corresponding to the gravimetric density of hydrogen storage up to 4.8 wt% and 2.5 wt% in monolayer and bilayer MoS2, respectively. The adsorption energies of hydrogen molecules are in the range of 0.10 e V/H2–0.25 e V/H2,which are acceptable for reversible H2 adsorption/desorption near ambient temperature. In addition, compared with light metals decorated low dimension carbon-based materials, the sandwiched structure of MoS2 exhibits the greatly enhanced binding stability of Li atoms as well as slightly decreased Li-Li interaction and thus avoids the problem of metal clustering.It is interesting to note that the Li atom apart from the electrostatic interaction, acts as a bridge of hybridization between the S atoms of MoS2 and adsorbed H2 molecules. The encouraging results show that such light metals decorated with MoS2 have great potential in developing high performance hydrogen storage materials.
作者
Cheng Zhang
Shaolong Tang
Mingsen Deng
Youwei Du
张诚;唐少龙;邓明森;都有为(School of Physics and Electronic Science, Guizhou Normal University;Department of Physics, Nanjing University;Guizhou Provincial Key Laboratory of Computational Nano-material Science, Guizhou Education University)
基金
supported by the National Key Basic Research Program of China(Grant No.2012CB932304)
the National Natural Science Foundation of China(Grant No.21763007)
the Innovation Team Foundation of the Education Department of Guizhou Province,China(Grant No.[2014]35)
the Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province,China(Grant No.[2016]002)