期刊文献+

How to characterize capacitance of organic optoelectronic devices accurately

How to characterize capacitance of organic optoelectronic devices accurately
下载PDF
导出
摘要 The selection of circuit model(i.e., parallel or series model) is critical when using a capacitance–frequency and capacitance–voltage technique to probe properties of organic materials and physical processes of organic optoelectronic devices. In the present work, capacitances of ITO/Alq3/Al and ITO/CuPc/Al are characterized by series and parallel model,respectively. It is found that the large series resistance comes from the ITO electrode and results in the inapplicability of the parallel model to measuring the capacitances of organic devices at high frequencies. An equivalent circuit model with consideration of the parasitical inductance of cables is constructed to derive the capacitance, and actual capacitance–frequency spectra of Alq3 and CuPc devices are obtained. Further investigation of temperature-dependent capacitance–frequency and capacitance–voltage characteristics indicates that CuPc and Al form the Schottky contact, the density and ionization energy of impurities in CuPc are obtained. Moreover, more practical guidelines for accurate capacitance measurement are introduced instead of the impedance magnitude, which will be very helpful for the organic community to investigate capacitance-related characteristics when dealing with various organic optoelectronic devices. The selection of circuit model(i.e., parallel or series model) is critical when using a capacitance–frequency and capacitance–voltage technique to probe properties of organic materials and physical processes of organic optoelectronic devices. In the present work, capacitances of ITO/Alq3/Al and ITO/CuPc/Al are characterized by series and parallel model,respectively. It is found that the large series resistance comes from the ITO electrode and results in the inapplicability of the parallel model to measuring the capacitances of organic devices at high frequencies. An equivalent circuit model with consideration of the parasitical inductance of cables is constructed to derive the capacitance, and actual capacitance–frequency spectra of Alq3 and CuPc devices are obtained. Further investigation of temperature-dependent capacitance–frequency and capacitance–voltage characteristics indicates that CuPc and Al form the Schottky contact, the density and ionization energy of impurities in CuPc are obtained. Moreover, more practical guidelines for accurate capacitance measurement are introduced instead of the impedance magnitude, which will be very helpful for the organic community to investigate capacitance-related characteristics when dealing with various organic optoelectronic devices.
作者 Hao-Miao Yu Yun He 于浩淼;何鋆(Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University;National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi’an))
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期382-386,共5页 中国物理B(英文版)
基金 supported by the Fundamental Research Funds for the Central Universities,China
关键词 organic semiconductor capacitance characterization Schottky contact ionization energy organic semiconductor capacitance characterization Schottky contact ionization energy

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部