摘要
Lithium–sulfur(Li–S) batteries have received more and more attention because of higher specific capacity and energy density of sulfur than current lithium–ion batteries. However, the low electrical conductivity of sulfur and its discharge product, and also the high dissolution of polysulfides restrict the Li–S battery practical applications. To improve their performances, in this work, we fabricate a novel free-standing, curled and partially reduced graphene oxide(CPrGO for short) network and combine it with sulfur to form a CPrGO–S composite as a cathode for Li–S battery. With sulfur content of 60 wt%, the free-standing CPrGO–S composite network delievers an initial capacity of 988.9 m Ah·g^(-1). After 200 cycles,it shows a stable capacity of 841.4 m Ah·g^(-1) at 0.2 C, retaining about 85% of the initial value. The high electrochemical performance demonstrates that the CPrGO–S network has great potential applications in energy storage system. Such improved properties can be ascribed to the unique free-standing and continous CPrGO–S network which has high specific surface area and good electrical conductivity. In addition, oxygen-containing groups on the partially reduced graphene oxide are beneficial to preventing the polysulfides from dissolving into electrolyte and can mitigate the "shuttle effect".
Lithium–sulfur(Li–S) batteries have received more and more attention because of higher specific capacity and energy density of sulfur than current lithium–ion batteries. However, the low electrical conductivity of sulfur and its discharge product, and also the high dissolution of polysulfides restrict the Li–S battery practical applications. To improve their performances, in this work, we fabricate a novel free-standing, curled and partially reduced graphene oxide(CPrGO for short) network and combine it with sulfur to form a CPrGO–S composite as a cathode for Li–S battery. With sulfur content of 60 wt%, the free-standing CPrGO–S composite network delievers an initial capacity of 988.9 m Ah·g^(-1). After 200 cycles,it shows a stable capacity of 841.4 m Ah·g^(-1) at 0.2 C, retaining about 85% of the initial value. The high electrochemical performance demonstrates that the CPrGO–S network has great potential applications in energy storage system. Such improved properties can be ascribed to the unique free-standing and continous CPrGO–S network which has high specific surface area and good electrical conductivity. In addition, oxygen-containing groups on the partially reduced graphene oxide are beneficial to preventing the polysulfides from dissolving into electrolyte and can mitigate the "shuttle effect".
基金
supported by the National Basic Research Program of China(Grant No.2012CB932302)
the National Natural Science Foundation of China(Grant Nos.11634014,51172271,and 51372269)
the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09040202)