期刊文献+

Reprocessible Epoxy Networks with Tunable Physical Properties:Synthesis,Stress Relaxation and Recyclability 被引量:4

Reprocessible Epoxy Networks with Tunable Physical Properties:Synthesis,Stress Relaxation and Recyclability
原文传递
导出
摘要 In order to extend the application of epoxy vitrimer, 1,4-cyclohexanedicarboxylic acid(CHDA) was used as a co-curing agent and structure modifier for sebacic acid(SA) cured diglycidyl ether of bisphenol A(DGEBA) epoxy vitrimer to tailor the mechanical properties of epoxy vitrimers with 1,5,7-triazabicylo[4.4.0]dec-5-ene(TBD) as a transesterification catalyst. The glass transition temperature(Tg) of vitrimer increased gradually with the increase in CHDA content. Vitrimers behaved from elastomer to tough and hard plastics were successfully achieved by varying the feed ratio of CHDA to SA. Both the Young's modulus and storage modulus increased apparently with the increase in CHDA content. Stress relaxation measurement indicated that more prominent stress relaxation occurred at elevated temperatures and the stress relaxation decreased with the increase of CHDA content due to the reduced mobility of the vitrimer backbone. The vitrimers showed excellent recyclability as evidenced by the unchanged gel fraction and mechanical properties after compression molded for several times. With tunable mechanical properties, the epoxy vitrimers may find extensive potential applications. In order to extend the application of epoxy vitrimer, 1,4-cyclohexanedicarboxylic acid(CHDA) was used as a co-curing agent and structure modifier for sebacic acid(SA) cured diglycidyl ether of bisphenol A(DGEBA) epoxy vitrimer to tailor the mechanical properties of epoxy vitrimers with 1,5,7-triazabicylo[4.4.0]dec-5-ene(TBD) as a transesterification catalyst. The glass transition temperature(Tg) of vitrimer increased gradually with the increase in CHDA content. Vitrimers behaved from elastomer to tough and hard plastics were successfully achieved by varying the feed ratio of CHDA to SA. Both the Young's modulus and storage modulus increased apparently with the increase in CHDA content. Stress relaxation measurement indicated that more prominent stress relaxation occurred at elevated temperatures and the stress relaxation decreased with the increase of CHDA content due to the reduced mobility of the vitrimer backbone. The vitrimers showed excellent recyclability as evidenced by the unchanged gel fraction and mechanical properties after compression molded for several times. With tunable mechanical properties, the epoxy vitrimers may find extensive potential applications.
出处 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第5期641-648,共8页 高分子科学(英文版)
基金 financially supported by the National Natural Science Foundation of China (No.51703188) Fundamental Research Funds for the Central Universities (Nos.XDJK2017A016 and XDJK2017C022)
关键词 Epoxy vitrimer Mechanical properties Stress-relaxation Recyclability Epoxy vitrimer Mechanical properties Stress-relaxation Recyclability
  • 相关文献

同被引文献13

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部