摘要
In nature, many biological soft tissues with synergistic heterostructures, such as sea cucumbers, skeletal muscles and cartilages, exhibit high functionality to adapt to complex environments. In artificial soft materials, hydrogels are similar to biological soft tissues due to the unique integration of "soft and wet" properties and elastic characteristics. However, currently hydrogel materials lack their necessary adaptability, including narrow working temperature windows and uncontrollable mechanics, thus restrict their engineering application in complex environments. Inspired by abovementionedbiological soft tissues, researchers have increasingly developed heterostructural gel materials as functional soft materials with high adaptability to various mechanical and environmental conditions. This article summarizes our recent work on high-performance adaptive gel materials with synergistic heterostructures, including the critical design criteria and the state-of-the-art fabrication strategies of our gel materials. The functional adaptation properties of these heterostructural gel materials are also presented in details, including temperature, wettability, mechanical and shape adaption.
In nature, many biological soft tissues with synergistic heterostructures, such as sea cucumbers, skeletal muscles and cartilages, exhibit high functionality to adapt to complex environments. In artificial soft materials, hydrogels are similar to biological soft tissues due to the unique integration of "soft and wet" properties and elastic characteristics. However, currently hydrogel materials lack their necessary adaptability, including narrow working temperature windows and uncontrollable mechanics, thus restrict their engineering application in complex environments. Inspired by abovementionedbiological soft tissues, researchers have increasingly developed heterostructural gel materials as functional soft materials with high adaptability to various mechanical and environmental conditions. This article summarizes our recent work on high-performance adaptive gel materials with synergistic heterostructures, including the critical design criteria and the state-of-the-art fabrication strategies of our gel materials. The functional adaptation properties of these heterostructural gel materials are also presented in details, including temperature, wettability, mechanical and shape adaption.
基金
financially supported by the National Natural Science Foundation of China(No.21574004)
the National Natural Science Funds for Distinguished Young Scholar(No.21725401)
the National Key R&D Program of China(No.2017YFA0207800)
the 111 project(No.B14009)
the Fundamental Research Funds for the Central Universities
the National‘Young Thousand Talents Program’