期刊文献+

含有不可数个无界变差点的一维连续函数 被引量:1

1-Dimensional Continuous Functions with Uncountable Unbounded Variation Points
下载PDF
导出
摘要 在单位区间[0,1]上构造了图像长度为无穷的一维连续函数.该函数含有不可数个但Lebesgue测度为0的无界变差点.所有无界变差点组成的集合中每一点皆为该集合的聚点. A 1-dimensional continuous function whose graph has infinite length on [0,1]has been constructed. Unbounded variation points of this function are uncountable, while Lebesgue measure of them is 0. All unbounded variation points are accumulation points of the set of unbounded variation points of the function.
作者 梁永顺 张琦 LIANG Yongshun;ZHANG Qi(Corresponding author. Institute of Science, Nanjing University of Science and Technology, Nanjing 210094, China;Faculty of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210014, China.)
出处 《数学年刊(A辑)》 CSCD 北大核心 2018年第2期145-152,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11201230 No.11271182) 江苏省自然科学基金(No.BK20161492)的资助
关键词 CANTOR集 盒维数 变差 图像长度 Cantor set Box dimension Variation Length of graph
  • 相关文献

参考文献1

二级参考文献13

  • 1Falconer, J.: Fractal Geometry: Mathematical Foundations and Applications, John Wiley Sons Inc., New York, 1990.
  • 2Korner, T. W.: Fourier Analysis, Cambridge University Press, Cambridge, 1989.
  • 3Mandelbrot, B. B.: The Fractal Geometry of Nature, Freeman, New York, 1977.
  • 4Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley Sons Inc, New York, 1993.
  • 5Liang, Y. S.: Box dimension of Riemann-Liouville fractional integral of continuous functions of bounded variation. Nonlinear Science, 72, 4304-4306 (2010).
  • 6Liang, Y. S., Su, W. Y.: The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus. Chaos, Solitons and Fractals, 34, 682-692 (2007).
  • 7Liang, Y. S., Su, W. Y.: Connection between the order of fractional calculus and fractional dimensins of a type of fractal functions. Analysis Theory and its Application, 23, 354-363 (2007).
  • 8Liang, Y. S., Su, W. Y.: The relationship between the Box dimension of the Besicovitch functions and the orders of their fractional calculus. Applied Mathematics and Computation, 200, 197-207 (2008).
  • 9Oldham, K. B., Spanier, J.: The Fractional Calculus, Academic Press, New York, 1974.
  • 10Tatom, F. B.: The relationship between fractional calculus and fractals. Fractals, 31, 217-229 (1995).

共引文献3

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部